exercise:261509e67f: Difference between revisions

From Stochiki
(Created page with "For a special fully continuous whole life insurance on <math>(x)</math>, you are given: i) <math>\quad \mu_{x+t}=0.03, t \geq 0</math> ii) <math>\delta=0.06</math> iii) The death benefit at time <math>t</math> is <math>b_{t}=e^{0.05 t}, t \geq 0</math> iv) <math>Z</math> is the present value random variable at issue for this insurance Calculate <math>\operatorname{Var}(Z)</math>. A. 0.0300 B. 0.0325 C. 0.0350 D. 0.0375 E. 0.0400")
 
No edit summary
Line 1: Line 1:
For a special fully continuous whole life insurance on <math>(x)</math>, you are given:
For a special fully continuous whole life insurance on <math>(x)</math>, you are given:


i) <math>\quad \mu_{x+t}=0.03, t \geq 0</math>
i) <math> \mu_{x+t}=0.03, t \geq 0</math>


ii) <math>\delta=0.06</math>
ii) <math>\delta=0.06</math>
Line 10: Line 10:


Calculate <math>\operatorname{Var}(Z)</math>.
Calculate <math>\operatorname{Var}(Z)</math>.
A. 0.0300
 
B. 0.0325
<ul class="mw-excansopts"><li> 0.0300</li><li>0.0325 </li><li> 0.0350</li><li> 0.0375</li><li> 0.0400</li></ul>
C. 0.0350
 
D. 0.0375
{{soacopyright|2024}}
E. 0.0400

Revision as of 12:38, 18 January 2024

For a special fully continuous whole life insurance on [math](x)[/math], you are given:

i) [math] \mu_{x+t}=0.03, t \geq 0[/math]

ii) [math]\delta=0.06[/math]

iii) The death benefit at time [math]t[/math] is [math]b_{t}=e^{0.05 t}, t \geq 0[/math]

iv) [math]Z[/math] is the present value random variable at issue for this insurance

Calculate [math]\operatorname{Var}(Z)[/math].

  • 0.0300
  • 0.0325
  • 0.0350
  • 0.0375
  • 0.0400

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.