exercise:68fed5f94a: Difference between revisions

From Stochiki
(Created page with "The joint density function for the random variables <math>X,Y </math> equals <math display = "block"> f_{X,Y}(x,y) = \begin{cases} cxy^3, y^2 < x < y, 0 < y < 1 \\ 0, \, \tex...")
 
No edit summary
 
Line 10: Line 10:
for a constant <math>c</math>. Determine the marginal density of <math>2Y^{1/2}</math> given <math>X=1/2</math>.
for a constant <math>c</math>. Determine the marginal density of <math>2Y^{1/2}</math> given <math>X=1/2</math>.


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li>
<li>
<math display = "block">
<math display = "block">
Line 42: Line 42:
\end{cases}
\end{cases}
</math></li>
</math></li>
</ol>
</ul>

Latest revision as of 02:40, 18 March 2024

The joint density function for the random variables [math]X,Y [/math] equals

[[math]] f_{X,Y}(x,y) = \begin{cases} cxy^3, y^2 \lt x \lt y, 0 \lt y \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]

for a constant [math]c[/math]. Determine the marginal density of [math]2Y^{1/2}[/math] given [math]X=1/2[/math].

  • [[math]] g(z)= \begin{cases} \frac{z^7}{6}, \sqrt{2} \lt z \lt 2^{3/4} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{64z^3}{3}, \frac{1}{2} \lt z \lt \frac{1}{\sqrt{2}} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} z^3, \sqrt{2} \lt z \lt 2^{3/4} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{255z^7}{1688}, \frac{1}{2} \lt z \lt \frac{1}{\sqrt{2}} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{2^{7/2}z^{5/2}}{5}, 0 \lt z \lt 2 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]