guide:Bcd133fb9d: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 186: | Line 186: | ||
\E[X_T]\geq \E[X_S](resp.\E[X_T]\leq \E[X_S]). | \E[X_T]\geq \E[X_S](resp.\E[X_T]\leq \E[X_S]). | ||
</math>|}} | </math>|}} | ||
==General references== | |||
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}} | |||
==Notes== | ==Notes== | ||
{{notelist}} | {{notelist}} |
Revision as of 21:16, 8 May 2024
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. A stochastic process [math](X_n)_{n\geq0}[/math] is called a submartingale (resp. supermartingale) if
- [math]\E[\vert X_n\vert] \lt \infty[/math] for all [math]n\geq 0[/math]
- [math](X_n)_{n\geq 0}[/math] is [math]\F_n[/math]-adapted.
- [math]\E[X_n\mid \F_m]\geq X_m[/math] a.s. for all [math]m\leq n[/math] (resp. [math]\E[X_n\mid \F_m]\leq X_m[/math] a.s. for all [math]m\leq n[/math])
A stochastic process [math](X_n)_{n\geq 0}[/math] is a martingale if and only if it is a submartingale and a supermartingale. A martingale is in particular a submartingale and a supermartingale. If [math](X_n)_{n\geq0}[/math] is a submartingale, then the map [math]n\mapsto \E[X_n][/math] is increasing. If [math](X_n)_{n\geq 0}[/math] is a supermartingale, then the map [math]n\mapsto \E[X_n][/math] is decreasing.
Example
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]S_n=\sum_{j=1}^{n}Y_j[/math], where [math](Y_n)_{n\geq1}[/math] is a sequence of iid r.v.'s. Moreover, let [math]S_0=0[/math], [math]\F_0=\{\varnothing,\Omega\}[/math] and [math]\F_n=\sigma(Y_1,...,Y_n)[/math]. Then we get
If [math]\E[Y_{n+1}] \gt 0[/math], then [math]\E[S_{n+1}\mid\F_n]\geq S_n[/math] and thus [math](S_n)_{n\geq 0}[/math] is a submartingale. On the other hand, if [math]\E[Y_{n+1}] \lt 0[/math], then [math]\E[S_{n+1}\mid\F_n]\leq S_n[/math] and thus [math](S_n)_{n\geq 0}[/math] is a supermartingale.
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. If [math](M_n)_{n\geq 0}[/math] is a martingale and [math]\varphi[/math] is a convex function such that [math]\varphi(M_n)\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math] for all [math]n\geq0[/math], then
The first two conditions for a martingale are clearly satisfied. Now for [math]m\leq n[/math], we get
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. If [math](M_n)_{n\geq 0}[/math] is a martingale, then
- [math](\vert M_n\vert)_{n\geq0}[/math] and [math](M^+_n)_{n\geq 0}[/math] are submartingales.
- if for all [math]n\geq 0[/math], [math]\E[M_n^2] \lt \infty[/math], then [math](M_n^2)_{n\geq 0}[/math] is a submartingale.
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a submartingale and let [math]T[/math] be a stopping time bounded by [math]C\in\N[/math]. Then
Exercise[a]
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a submartingale. Then there exists a martingale [math]M=(M_n)_{n\geq 0}[/math] with [math]M_0=0[/math] and a sequence [math]A=(A_n)_{n\geq 0}[/math], such that [math]A_{n+1}\geq A_n[/math] a.s. with [math]A_0=0[/math] a.s., which is called an increasing process, and with [math]A_{n+1}[/math] being [math]\F_n[/math]-measurable, which we will call predictable, such that
Moreover, this decomposition is a.s. unique.
Let us define [math]A_0=0[/math] and for [math]n\geq 1[/math]
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]X=(X_n)_{n\geq 0}[/math] be a supermartingale. Then there exists a.s. a unique decomposition
Let [math]Y_n=-X_n[/math] for all [math]n\geq 0[/math]. Then the stochastic process obtained by [math](Y_n)_{n\geq0}[/math] is a submartingale. Theorem 8.4. tells us that there exists a unique decomposition
Now consider a stopped process. Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]T[/math] be a stopping time and let [math](X_n)_{n\geq 0}[/math] be a stochastic process. We denote by [math]X^T=(X^T_n)_{n\geq 0}[/math] the process [math](X_{n\land T})_{n\geq 0}[/math].
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a martingale (resp. sub- or supermartingale) and let [math]T[/math] be a stopping time. Then [math](X_{n\land T})_{n\geq 0}[/math] is also a martingale (resp. sub- or supermartingale).
Note that
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a submartingale (resp. supermartingale) and let [math]S[/math] and [math]T[/math] be two bounded stopping times, such that [math]S\leq T[/math] a.s. Then
Let us assume that [math](X_n)_{n\geq 0}[/math] is a supermartingale. Let [math]A\in\F_S[/math] such that [math]S\leq T\leq C\in\N[/math]. We already know that [math](X_{n\land T})_{n\geq 0}[/math] is a supermartingale. Therefore we get
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a submartingale (resp. supermartingale) and let [math]T[/math] be a bounded stopping time. Then
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].