exercise:6bdf658d45: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with distribution function <math>m_X(x)</math> defined by <math display="block"> m_X(-1) = 1/5,\ \ m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \ m_X(2) = 1/5\ . </math> <ul><li> Let <math>Y</math> be the random varia...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with distribution function
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with distribution function
<math>m_X(x)</math> defined by
<math>m_X(x)</math> defined by


Line 11: Line 5:
m_X(-1) = 1/5,\ \  m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \  m_X(2) = 1/5\ .
m_X(-1) = 1/5,\ \  m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \  m_X(2) = 1/5\ .
</math>
</math>
<ul><li> Let <math>Y</math> be the random variable defined by the equation <math>Y = X + 3</math>.  Find the
<ul style="list-style-type:lower-alpha"><li> Let <math>Y</math> be the random variable defined by the equation <math>Y = X + 3</math>.  Find the
distribution function <math>m_Y(y)</math> of <math>Y</math>.
distribution function <math>m_Y(y)</math> of <math>Y</math>.
</li>
</li>

Latest revision as of 20:59, 12 June 2024

Let [math]X[/math] be a random variable with distribution function [math]m_X(x)[/math] defined by

[[math]] m_X(-1) = 1/5,\ \ m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \ m_X(2) = 1/5\ . [[/math]]

  • Let [math]Y[/math] be the random variable defined by the equation [math]Y = X + 3[/math]. Find the distribution function [math]m_Y(y)[/math] of [math]Y[/math].
  • Let [math]Z[/math] be the random variable defined by the equation [math]Z = X^2[/math]. Find the distribution function [math]m_Z(z)[/math] of [math]Z[/math].