exercise:Bff4875de9: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Lucas<ref group="Notes" >E. Lucas, “Théorie des Functions Numériques Simplement Periodiques,” ''American J. Math.,'' vol. 1 (1878), pp. 184-240, 289-321.</ref> proved the following general result relating to Exercise \ref{exer 3.2.36}. If...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Lucas<ref group="Notes" >E. Lucas, “Théorie des Functions Numériques Simplement Periodiques,” ''American J. Math.,'' vol. 1 (1878), pp. 184-240,
\newcommand{\NA}{{\rm NA}}
289-321.</ref> proved the following general result relating to [[exercise:05eec0c9b5|Exercise]]. If <math>p</math> is any prime number, then <math>{n
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Lucas<ref group="Notes" >E. Lucas, “Théorie des Functions
Numériques Simplement Periodiques,” ''American J. Math.,'' vol. 1 (1878), pp. 184-240,
289-321.</ref> proved the following general result relating to Exercise \ref{exer
3.2.36}. If <math>p</math> is any prime number, then <math>{n
\choose j}~ (\mbox{mod\ }p)</math> can be found as follows: Expand <math>n</math> and <math>j</math> in base <math>p</math> as
\choose j}~ (\mbox{mod\ }p)</math> can be found as follows: Expand <math>n</math> and <math>j</math> in base <math>p</math> as
<math>n = s_0 + s_1p + s_2p^2 + \cdots + s_kp^k</math> and <math>j = r_0 + r_1p + r_2p^2 + \cdots +
<math>n = s_0 + s_1p + s_2p^2 + \cdots + s_kp^k</math> and <math>j = r_0 + r_1p + r_2p^2 + \cdots +
Line 40: Line 32:
(\mbox{mod\ }7)</math>,  we see that the result is correct for this example.
(\mbox{mod\ }7)</math>,  we see that the result is correct for this example.
Show that this result implies that, for <math>p = 2</math>, the <math>(p^k - 1)</math>st row of your
Show that this result implies that, for <math>p = 2</math>, the <math>(p^k - 1)</math>st row of your
triangle in Exercise [[exercise:05eec0c9b5 |Exercise]] has no zeros.
triangle in [[exercise:05eec0c9b5 |Exercise]] has no zeros.


'''Notes'''
'''Notes'''


{{Reflist|group=Notes}}
{{Reflist|group=Notes}}

Latest revision as of 23:18, 12 June 2024

Lucas[Notes 1] proved the following general result relating to Exercise. If [math]p[/math] is any prime number, then [math]{n \choose j}~ (\mbox{mod\ }p)[/math] can be found as follows: Expand [math]n[/math] and [math]j[/math] in base [math]p[/math] as [math]n = s_0 + s_1p + s_2p^2 + \cdots + s_kp^k[/math] and [math]j = r_0 + r_1p + r_2p^2 + \cdots + r_kp^k[/math], respectively. (Here [math]k[/math] is chosen large enough to represent all numbers from 0 to [math]n[/math] in base [math]p[/math] using [math]k[/math] digits.) Let [math]s = (s_0,s_1,s_2,\dots,s_k)[/math] and [math]r = (r_0,r_1,r_2,\dots,r_k)[/math]. Then

[[math]] {n \choose j}~(\mbox{mod\ }p) = \prod_{i = 0}^k {{s_i} \choose {r_i}}~(\mbox{mod\ }p)\ . [[/math]]

For example, if [math]p = 7[/math], [math]n = 12[/math], and [math]j = 9[/math], then

[[math]] \begin{eqnarray*} 12 & = & 5 \cdot 7^0 + 1 \cdot 7^1\ , \\ 9 & = & 2 \cdot 7^0 + 1 \cdot 7^1\ , \end{eqnarray*} [[/math]]

so that

[[math]] \begin{eqnarray*} s & = & (5, 1)\ , \\ r & = & (2, 1)\ , \end{eqnarray*} [[/math]]

and this result states that

[[math]] {12 \choose 9}~(\mbox{mod\ }p) = {5 \choose 2} {1 \choose 1}~(\mbox{mod\ }7)\ . [[/math]]

Since [math]{12 \choose 9} = 220 = 3~(\mbox{mod\ }7)[/math], and [math]{5 \choose 2} = 10 = 3~ (\mbox{mod\ }7)[/math], we see that the result is correct for this example. Show that this result implies that, for [math]p = 2[/math], the [math](p^k - 1)[/math]st row of your triangle in Exercise has no zeros.

Notes

  1. E. Lucas, “Théorie des Functions Numériques Simplement Periodiques,” American J. Math., vol. 1 (1878), pp. 184-240, 289-321.