exercise:Fecf01cb24: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1,\ X_2,\ \ldots,\ X_n</math> be <math>n</math> mutually independent random variables, each of which is uniformly distributed on the integers from 1 to <math>k</math>. Let <math>Y</math> denote the minimum of the <math>X_i</math>'s....") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>X_1,\ X_2,\ \ldots,\ X_n</math> be <math>n</math> mutually independent random variables, each of which is uniformly distributed on the integers from 1 to <math>k</math>. Let <math>Y</math> denote the minimum of the <math>X_i</math>'s. Find the distribution of <math>Y</math>. | |||
random variables, each of which is uniformly distributed on the integers from 1 to | |||
<math>k</math>. Let <math>Y</math> denote the minimum of the <math>X_i</math>'s. Find the distribution of <math>Y</math>. |
Latest revision as of 00:01, 14 June 2024
Let [math]X_1,\ X_2,\ \ldots,\ X_n[/math] be [math]n[/math] mutually independent random variables, each of which is uniformly distributed on the integers from 1 to [math]k[/math]. Let [math]Y[/math] denote the minimum of the [math]X_i[/math]'s. Find the distribution of [math]Y[/math].