exercise:Cf1b53da02: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable which is Poisson distributed with parameter <math>\lambda</math>. Show that <math>E(X) = \lambda</math>. '' Hint'': Recall that <math display="block"> e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cd...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable which is Poisson distributed with parameter <math>\lambda</math>.  Show that <math>E(X) = \lambda</math>.  '' Hint'':  
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable which is
Poisson distributed with parameter <math>\lambda</math>.  Show that <math>E(X) = \lambda</math>.  '' Hint'':  
Recall that  
Recall that  



Latest revision as of 16:35, 14 June 2024

Let [math]X[/math] be a random variable which is Poisson distributed with parameter [math]\lambda[/math]. Show that [math]E(X) = \lambda[/math]. Hint: Recall that

[[math]] e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\,. [[/math]]