exercise:2efc106914: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be the outcome of a chance experiment with <math>E(X) = \mu</math> and <math>V(X) = \sigma^2</math>. When <math>\mu</math> and <math>\sigma^2</math> are unknown, the statistician often estimates them by repeating the experiment...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be the outcome of a chance experiment with <math>E(X) =\mu</math> and <math>V(X) = \sigma^2</math>.  When <math>\mu</math> and <math>\sigma^2</math> are unknown, the statistician often estimates them by repeating the experiment <math>n</math> times with outcomes <math>x_1</math>, <math>x_2, \ldots, x_n</math>, estimating <math>\mu</math> by the  ''sample mean''
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be the outcome of a chance experiment with <math>E(X) =
\mu</math> and <math>V(X) = \sigma^2</math>.  When <math>\mu</math> and <math>\sigma^2</math> are unknown, the statistician
often estimates them by repeating the experiment <math>n</math> times with outcomes
<math>x_1</math>, <math>x_2</math>, \dots, <math>x_n</math>, estimating <math>\mu</math> by the  ''sample mean''


<math display="block">
<math display="block">
Line 21: Line 12:
should remind the reader of the definitions of the theoretical mean and variance.  (Many
should remind the reader of the definitions of the theoretical mean and variance.  (Many
statisticians define the sample variance with the coefficient <math>1/n</math> replaced by
statisticians define the sample variance with the coefficient <math>1/n</math> replaced by
<math>1/(n-1)</math>.  If this alternative definition is used, the expected value of <math>s^2</math> is equal to <math>\sigma^2</math>. See
<math>1/(n-1)</math>.  If this alternative definition is used, the expected value of <math>s^2</math> is equal to <math>\sigma^2</math>. (See
Exercise \ref{exer 6.2.19}, part (d).)
[[exercise:974197a009|Exercise]], part (d).) Write a computer program that will roll a die <math>n</math> times and compute the sample mean and sample variance.  Repeat this experiment several times for <math>n = 10</math> and <math>n =1000</math>.  How well do the sample mean and sample variance estimate the true mean 7/2 and variance 35/12?
Write a computer program that will roll a die <math>n</math> times and compute the sample mean
and sample variance.  Repeat this experiment several times for <math>n = 10</math> and <math>n =
1000</math>.  How well do the sample mean and sample variance estimate the true mean 7/2
and variance 35/12?

Latest revision as of 21:12, 14 June 2024

Let [math]X[/math] be the outcome of a chance experiment with [math]E(X) =\mu[/math] and [math]V(X) = \sigma^2[/math]. When [math]\mu[/math] and [math]\sigma^2[/math] are unknown, the statistician often estimates them by repeating the experiment [math]n[/math] times with outcomes [math]x_1[/math], [math]x_2, \ldots, x_n[/math], estimating [math]\mu[/math] by the sample mean

[[math]] \bar{x} = \frac 1n \sum_{i = 1}^n x_i\ , [[/math]]

and [math]\sigma^2[/math] by the sample variance

[[math]] s^2 = \frac 1n \sum_{i = 1}^n (x_i - \bar x)^2\ . [[/math]]

Then [math]s[/math] is the sample standard deviation. These formulas should remind the reader of the definitions of the theoretical mean and variance. (Many statisticians define the sample variance with the coefficient [math]1/n[/math] replaced by [math]1/(n-1)[/math]. If this alternative definition is used, the expected value of [math]s^2[/math] is equal to [math]\sigma^2[/math]. (See Exercise, part (d).) Write a computer program that will roll a die [math]n[/math] times and compute the sample mean and sample variance. Repeat this experiment several times for [math]n = 10[/math] and [math]n =1000[/math]. How well do the sample mean and sample variance estimate the true mean 7/2 and variance 35/12?