exercise:974197a009: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that, for the sample mean <math>\bar x</math> and sample variance <math>s^2</math> as defined in Exercise Exercise, <ul><li> <math>E(\bar x) = \mu</math>. </li> <li> <math>E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n</m...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Show that, for the sample mean <math>\bar x</math> and sample variance <math>s^2</math> as defined in [[exercise:2efc106914 |Exercise]],
\newcommand{\NA}{{\rm NA}}
<ul style="list-style-type:lower-alpha"><li> <math>E(\bar x) = \mu</math>.
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Show that, for the sample mean <math>\bar x</math> and sample
variance <math>s^2</math> as defined in Exercise [[exercise:2efc106914 |Exercise]],
<ul><li> <math>E(\bar x) = \mu</math>.
</li>
</li>
<li> <math>E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n</math>.
<li> <math>E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n</math>.
Line 24: Line 17:
and take expectations of both sides, using part (b) when necessary.
and take expectations of both sides, using part (b) when necessary.
</li>
</li>
<li> Show that if, in the definition of <math>s^2</math> in Exercise [[exercise:2efc106914 |Exercise]], we
<li> Show that if, in the definition of <math>s^2</math> in [[exercise:2efc106914 |Exercise]], we
replace the coefficient <math>1/n</math> by the coefficient <math>1/(n-1)</math>, then <math>E(s^2) = \sigma^2</math>.
replace the coefficient <math>1/n</math> by the coefficient <math>1/(n-1)</math>, then <math>E(s^2) = \sigma^2</math>.
(This shows why many statisticians use the coefficient <math>1/(n-1)</math>.  The number <math>s^2</math>
(This shows why many statisticians use the coefficient <math>1/(n-1)</math>.  The number <math>s^2</math>

Latest revision as of 21:14, 14 June 2024

Show that, for the sample mean [math]\bar x[/math] and sample variance [math]s^2[/math] as defined in Exercise,

  • [math]E(\bar x) = \mu[/math].
  • [math]E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n[/math].
  • [math]E(s^2) = \frac {n-1}n\sigma^2[/math]. Hint: For (c) write
    [[math]] \begin{eqnarray*} \sum_{i = 1}^n (x_i - \bar x)^2 & = & \sum_{i = 1}^n \bigl((x_i - \mu) - (\bar x - \mu)\bigr)^2 \\ & = & \sum_{i = 1}^n (x_i - \mu)^2 - 2(\bar x - \mu) \sum_{i = 1}^n (x_i - \mu) + n(\bar x - \mu)^2 \\ & = & \sum_{i = 1}^n (x_i - \mu)^2 - n(\bar x - \mu)^2, \end{eqnarray*} [[/math]]
    and take expectations of both sides, using part (b) when necessary.
  • Show that if, in the definition of [math]s^2[/math] in Exercise, we replace the coefficient [math]1/n[/math] by the coefficient [math]1/(n-1)[/math], then [math]E(s^2) = \sigma^2[/math]. (This shows why many statisticians use the coefficient [math]1/(n-1)[/math]. The number [math]s^2[/math] is used to estimate the unknown quantity [math]\sigma^2[/math]. If an estimator has an average value which equals the quantity being estimated, then the estimator is said to be unbiased. Thus, the statement [math]E(s^2) = \sigma^2[/math] says that [math]s^2[/math] is an unbiased estimator of [math]\sigma^2[/math].)