exercise:63ec956b0e: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with mean <math>\mu = 10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper bound for the following probabilities. <ul><li> <math>P(|X - 10| \geq 2)</m...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable with mean <math>\mu =
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with mean <math>\mu =
10</math> and variance <math>\sigma^2 = 100/3</math>.  Using Chebyshev's Inequality, find an upper
10</math> and variance <math>\sigma^2 = 100/3</math>.  Using Chebyshev's Inequality, find an upper
bound for the following probabilities.
bound for the following probabilities.
<ul><li> <math>P(|X - 10| \geq 2)</math>.
<ul style="list-style-type:lower-alpha"><li> <math>P(|X - 10| \geq 2)</math>.
</li>
</li>
<li> <math>P(|X - 10| \geq 5)</math>.
<li> <math>P(|X - 10| \geq 5)</math>.

Latest revision as of 22:42, 14 June 2024

Let [math]X[/math] be a continuous random variable with mean [math]\mu = 10[/math] and variance [math]\sigma^2 = 100/3[/math]. Using Chebyshev's Inequality, find an upper bound for the following probabilities.

  • [math]P(|X - 10| \geq 2)[/math].
  • [math]P(|X - 10| \geq 5)[/math].
  • [math]P(|X - 10| \geq 9)[/math].
  • [math]P(|X - 10| \geq 20)[/math].