exercise:A917bb4aad: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be random variables with values in <math>\{1,2,3,4,5,6\}</math> with distribution functions <math>p_X</math> and <math>p_Y</math> given by <math display="block"> \begin{eqnarray*} p_X(j) &=& a_j\ , \\ p_Y(j)...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> and <math>Y</math> be random variables with values in  
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be random variables with values in  
<math>\{1,2,3,4,5,6\}</math> with distribution functions <math>p_X</math> and <math>p_Y</math> given by
<math>\{1,2,3,4,5,6\}</math> with distribution functions <math>p_X</math> and <math>p_Y</math> given by


Line 15: Line 9:
</math>
</math>


<ul><li> Find the ordinary generating functions <math>h_X(z)</math> and <math>h_Y(z)</math> for these
<ul style="list-style-type:lower-alpha"><li> Find the ordinary generating functions <math>h_X(z)</math> and <math>h_Y(z)</math> for these
distributions.
distributions.
</li>
</li>

Latest revision as of 23:45, 14 June 2024

Let [math]X[/math] and [math]Y[/math] be random variables with values in [math]\{1,2,3,4,5,6\}[/math] with distribution functions [math]p_X[/math] and [math]p_Y[/math] given by

[[math]] \begin{eqnarray*} p_X(j) &=& a_j\ , \\ p_Y(j) &=& b_j\ . \end{eqnarray*} [[/math]]

  • Find the ordinary generating functions [math]h_X(z)[/math] and [math]h_Y(z)[/math] for these distributions.
  • Find the ordinary generating function [math]h_Z(z)[/math] for the distribution [math]Z = X + Y[/math].
  • Show that [math]h_Z(z)[/math] cannot ever have the form
    [[math]] h_Z(z) = \frac{z^2 + z^3 +\cdots+ z^{12}}{11}\ . [[/math]]

Hint: [math]h_X[/math] and [math]h_Y[/math] must have at least one nonzero root, but [math]h_Z(z)[/math] in the form given has no nonzero real roots. It follows from this observation that there is no way to load two dice so that the probability that a given sum will turn up when they are tossed is the same for all sums (i.e., that all outcomes are equally likely).