exercise:0e78fd06fb: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values in <math>[\,0,2]</math> and density <math>f_X</math>. Find the moment generating function <math>g(t)</math> for <math>X</math> if <ul><li> <math>f_X(x) = 1/2</math>. </li> <li> <math>...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable with values in <math>[\,0,2]</math> and density <math>f_X</math>.  Find the moment generating function <math>g(t)</math> for <math>X</math>
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values in
<math>[\,0,2]</math> and density <math>f_X</math>.  Find the moment generating function <math>g(t)</math> for <math>X</math>
if
if
<ul><li> <math>f_X(x) = 1/2</math>.
<ul style="list-style-type:lower-alpha"><li> <math>f_X(x) = 1/2</math>.
</li>
</li>
<li> <math>f_X(x) = (1/2)x</math>.
<li> <math>f_X(x) = (1/2)x</math>.
Line 19: Line 12:
</li>
</li>
</ul>
</ul>
'' Hint'': Use the integral definition, as in Examples \ref{exam
 
10.3.1} [[guide:31815919f9#exam 10.3.2 |and]].
'' Hint'': Use the integral definition, as in [[guide:31815919f9#exam 10.3.1|example]] and [[guide:31815919f9#exam 10.3.2|example]].

Latest revision as of 00:10, 15 June 2024

Let [math]X[/math] be a continuous random variable with values in [math][\,0,2][/math] and density [math]f_X[/math]. Find the moment generating function [math]g(t)[/math] for [math]X[/math] if

  • [math]f_X(x) = 1/2[/math].
  • [math]f_X(x) = (1/2)x[/math].
  • [math]f_X(x) = 1 - (1/2)x[/math].
  • [math]f_X(x) = |1 - x|[/math].
  • [math]f_X(x) = (3/8)x^2[/math].

Hint: Use the integral definition, as in example and example.