exercise:26c45e3fd8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In Example, for what values of <math>a</math> and <math>b</math> do we obtain an absorbing Markov chain?")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In [[guide:52e01d4de7#exam 11.1.2 |Example]], for what values of
\newcommand{\mathds}{\mathbb}</math></div> In [[guide:52e01d4de7#exam 11.1.2 |Example]], for what values of <math>a</math> and <math>b</math> do we obtain an absorbing Markov chain?
<math>a</math> and <math>b</math>  
do we obtain an absorbing Markov chain?

Latest revision as of 21:35, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In Example, for what values of [math]a[/math] and [math]b[/math] do we obtain an absorbing Markov chain?