exercise:C2bcd1e04d: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Toss a fair die repeatedly. Let <math>S_n</math> denote the total of the outcomes through the <math>n</math>th toss. Show that there is a limiting value for the proportion of the first <math>n</math> values of <math>S_n</math> that are divisible...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Toss a fair die repeatedly.  Let <math>S_n</math> denote the total of the outcomes through the <math>n</math>th toss.  Show that there is a limiting value for the proportion of the first <math>n</math> values of <math>S_n</math> that are divisible by 7, and compute the value for this limit.  '' Hint'': The desired limit is an equilibrium probability vector for an appropriate seven state Markov chain.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Toss a fair die repeatedly.  Let <math>S_n</math> denote the total
of
the outcomes through the <math>n</math>th toss.  Show that there is a limiting value for
the
proportion of the first <math>n</math> values of <math>S_n</math> that are divisible by 7, and
compute  
the value for this limit.  '' Hint'': The desired limit is an equilibrium
probability vector for an appropriate seven state Markov chain.

Latest revision as of 21:56, 17 June 2024

Toss a fair die repeatedly. Let [math]S_n[/math] denote the total of the outcomes through the [math]n[/math]th toss. Show that there is a limiting value for the proportion of the first [math]n[/math] values of [math]S_n[/math] that are divisible by 7, and compute the value for this limit. Hint: The desired limit is an equilibrium probability vector for an appropriate seven state Markov chain.