exercise:9bc47956f1: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math display="block"> \mat {P} = \pmatrix{ 1 & 0 & 0 \cr .25 & 0 & .75 \cr 0 & 0 & 1 } </math> be a transition matrix of a Markov chain. Find two fixed vectors of <math>\mat {P}</math> that are linearly independent. Does this show that the...")
 
No edit summary
 
Line 11: Line 11:
</math>
</math>
be a transition matrix of a Markov chain.  Find two fixed vectors of <math>\mat {P}</math>
be a transition matrix of a Markov chain.  Find two fixed vectors of <math>\mat {P}</math>
that
that are linearly independent.  Does this show that the Markov chain is not regular?
are linearly independent.  Does this show that the Markov chain is not regular?

Latest revision as of 21:14, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let

[[math]] \mat {P} = \pmatrix{ 1 & 0 & 0 \cr .25 & 0 & .75 \cr 0 & 0 & 1 } [[/math]]

be a transition matrix of a Markov chain. Find two fixed vectors of [math]\mat {P}[/math] that are linearly independent. Does this show that the Markov chain is not regular?