exercise:C5e65fdc64: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that any ergodic Markov chain with a symmetric transition matrix (i.e., <math>p_{ij} = p_{ji})</math> is reversible.")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Show that any ergodic Markov chain with a symmetric  
\newcommand{\mathds}{\mathbb}</math></div> Show that any ergodic Markov chain with a symmetric transition matrix (i.e., <math>p_{ij} = p_{ji})</math> is reversible.
transition matrix (i.e., <math>p_{ij} = p_{ji})</math> is reversible.

Latest revision as of 01:27, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that any ergodic Markov chain with a symmetric transition matrix (i.e., [math]p_{ij} = p_{ji})[/math] is reversible.