exercise:2ab75d75ba: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that an ergodic Markov chain has states <math>s_1, s_2, \ldots, s_k</math>. Let <math>S^{(n)}_j</math> denote the number of times that the chain is in state <math>s_j</math> in the first <math>n</math> steps. Let <math>\mat{w}</math> deno...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Assume that an ergodic Markov chain has states <math>s_1,
\newcommand{\mathds}{\mathbb}</math></div> Assume that an ergodic Markov chain has states <math>s_1,s_2, \ldots,s_k</math>.  Let <math>S^{(n)}_j</math> denote the number of times that the chain is in state <math>s_j</math> in the first <math>n</math> steps.  Let <math>\mat{w}</math> denote the fixed probability row vector for this chain.  Show that, regardless of the starting state, the expected value of <math>S^{(n)}_j</math>,
s_2, \ldots,
divided by <math>n</math>, tends to <math>w_j</math> as <math>n \rightarrow \infty</math>.  '' Hint'':  If the chain starts in
s_k</math>.  Let <math>S^{(n)}_j</math> denote the number of times that the chain is in state
state <math>s_i</math>, then the expected value of <math>S^{(n)}_j</math> is given by the expression
<math>s_j</math> in the
first <math>n</math> steps.  Let <math>\mat{w}</math> denote the fixed probability row vector for
this chain.  Show
that, regardless of the starting state, the expected value of <math>S^{(n)}_j</math>,
divided by <math>n</math>,
tends to <math>w_j</math> as <math>n \rightarrow \infty</math>.  '' Hint'':  If the chain starts in
state
<math>s_i</math>, then the expected value of <math>S^{(n)}_j</math> is given by the expression


<math display="block">
<math display="block">
\sum_{h = 0}^n p^{(h)}_{ij}\ .
\sum_{h = 0}^n p^{(h)}_{ij}\ .
</math>
</math>

Latest revision as of 01:33, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Assume that an ergodic Markov chain has states [math]s_1,s_2, \ldots,s_k[/math]. Let [math]S^{(n)}_j[/math] denote the number of times that the chain is in state [math]s_j[/math] in the first [math]n[/math] steps. Let [math]\mat{w}[/math] denote the fixed probability row vector for this chain. Show that, regardless of the starting state, the expected value of [math]S^{(n)}_j[/math],

divided by [math]n[/math], tends to [math]w_j[/math] as [math]n \rightarrow \infty[/math]. Hint: If the chain starts in state [math]s_i[/math], then the expected value of [math]S^{(n)}_j[/math] is given by the expression

[[math]] \sum_{h = 0}^n p^{(h)}_{ij}\ . [[/math]]