exercise:85a2ae80e0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In the gambler's ruin problem, assume that the gambler initial stake is 1 dollar, and assume that her probability of success on any one game is <math>p</math>. Let <math>T</math> be the number of games until 0 is reached (the gambler is ruined)....")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In the gambler's ruin problem, assume that the gambler initial stake
\newcommand{\mathds}{\mathbb}</math></div> In the gambler's ruin problem, assume that the gambler initial stake is 1 dollar, and assume that her probability of success on any one game is <math>p</math>.  Let <math>T</math> be the
is 1 dollar, and assume that her probability of success on any one game is <math>p</math>.  Let <math>T</math> be the
number of games until 0 is reached (the gambler is ruined).  Show that the  generating
number of games until 0 is reached (the gambler is ruined).  Show that the  generating
function for <math>T</math> is   
function for <math>T</math> is   
Line 17: Line 16:
h(1) = \left \{ \begin{array}{ll}
h(1) = \left \{ \begin{array}{ll}
             q/p, & \mbox{if $q \leq p$}, \\
             q/p, & \mbox{if $q \leq p$}, \\
               1, & \mbox{if <math>q \geq p,</math>}  
               1, & \mbox{if $q \geq p,$}  
         \end{array}
         \end{array}
         \right.     
         \right.     
Line 26: Line 25:
h'(1) = \left \{ \begin{array}{ll}
h'(1) = \left \{ \begin{array}{ll}
               1/(q - p), & \mbox{if $q  >  p$}, \\
               1/(q - p), & \mbox{if $q  >  p$}, \\
                 \infty, & \mbox{if <math>q = p.</math>}
                 \infty, & \mbox{if $q = p.$}
         \end{array}
         \end{array}
         \right.  
         \right.  

Latest revision as of 00:54, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In the gambler's ruin problem, assume that the gambler initial stake is 1 dollar, and assume that her probability of success on any one game is [math]p[/math]. Let [math]T[/math] be the

number of games until 0 is reached (the gambler is ruined). Show that the generating function for [math]T[/math] is

[[math]] h(z) = \frac{1 - \sqrt{1 - 4pqz^2}}{2pz}\ , [[/math]]

and that

[[math]] h(1) = \left \{ \begin{array}{ll} q/p, & \mbox{if $q \leq p$}, \\ 1, & \mbox{if $q \geq p,$} \end{array} \right. [[/math]]

and

[[math]] h'(1) = \left \{ \begin{array}{ll} 1/(q - p), & \mbox{if $q \gt p$}, \\ \infty, & \mbox{if $q = p.$} \end{array} \right. [[/math]]

Interpret your results in terms of the time [math]T[/math] to reach 0. (See also Example.)