exercise:05298cad26: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that the Taylor series expansion for <math>\sqrt{1 - x}</math> is <math display="block"> \sqrt{1 - x} = \sum_{n = 0}^\infty {{1/2} \choose n} x^n\ , </math> where the binomial coefficient <math>{1/2} \choose n</math> is <math display="bloc...")
 
No edit summary
 
Line 15: Line 15:
{{1/2} \choose n} = \frac{(1/2)(1/2 - 1) \cdots (1/2 - n + 1)}{n!}\ .   
{{1/2} \choose n} = \frac{(1/2)(1/2 - 1) \cdots (1/2 - n + 1)}{n!}\ .   
</math>
</math>
Using this and the result of Exercise [[exercise:85a2ae80e0 |Exercise]], show that the probability
Using this and the result of [[exercise:85a2ae80e0 |Exercise]], show that the probability
that the gambler is ruined on the <math>n</math>th step is
that the gambler is ruined on the <math>n</math>th step is


Line 21: Line 21:
p_T(n) = \left \{ \begin{array}{ll}
p_T(n) = \left \{ \begin{array}{ll}
\frac{(-1)^{k - 1}}{2p} {{1/2} \choose k} (4pq)^k, & \mbox{if $n = 2k - 1$,} \\
\frac{(-1)^{k - 1}}{2p} {{1/2} \choose k} (4pq)^k, & \mbox{if $n = 2k - 1$,} \\
                                                 0, & \mbox{if <math>n = 2k</math>.}
                                                 0, & \mbox{if $n = 2k$.}
                 \end{array}
                 \end{array}
         \right.   
         \right.   
</math>
</math>

Latest revision as of 01:55, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that the Taylor series expansion for [math]\sqrt{1 - x}[/math] is

[[math]] \sqrt{1 - x} = \sum_{n = 0}^\infty {{1/2} \choose n} x^n\ , [[/math]]

where the binomial coefficient [math]{1/2} \choose n[/math] is

[[math]] {{1/2} \choose n} = \frac{(1/2)(1/2 - 1) \cdots (1/2 - n + 1)}{n!}\ . [[/math]]

Using this and the result of Exercise, show that the probability that the gambler is ruined on the [math]n[/math]th step is

[[math]] p_T(n) = \left \{ \begin{array}{ll} \frac{(-1)^{k - 1}}{2p} {{1/2} \choose k} (4pq)^k, & \mbox{if $n = 2k - 1$,} \\ 0, & \mbox{if $n = 2k$.} \end{array} \right. [[/math]]