exercise:7f4489e357: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>p</math> and <math>p'</math> be the two distributions <math display="block"> p = \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 1/3 & 0 & 0 & 2/3 & 0 \cr}\ , </math> <math display="block"> p' = \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 0 & 2/3 & 0 & 0 & 1/3...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>p</math> and <math>p'</math> be the two distributions
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>p</math> and <math>p'</math> be the two distributions


<math display="block">
<math display="block">
Line 20: Line 14:
0 & 2/3 & 0 & 0 & 1/3 \cr}\ .  
0 & 2/3 & 0 & 0 & 1/3 \cr}\ .  
</math>
</math>
<ul><li> Show that <math>p</math> and <math>p'</math> have the same first and second moments, but not
<ul style="list-style-type:lower-alpha"><li> Show that <math>p</math> and <math>p'</math> have the same first and second moments, but not
the same third and fourth moments.
the same third and fourth moments.
</li>
</li>

Latest revision as of 23:44, 14 June 2024

Let [math]p[/math] and [math]p'[/math] be the two distributions

[[math]] p = \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 1/3 & 0 & 0 & 2/3 & 0 \cr}\ , [[/math]]


[[math]] p' = \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 0 & 2/3 & 0 & 0 & 1/3 \cr}\ . [[/math]]

  • Show that [math]p[/math] and [math]p'[/math] have the same first and second moments, but not the same third and fourth moments.
  • Find the ordinary and moment generating functions for [math]p[/math] and [math]p'[/math].