exercise:Eeb92809e1: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Find the matrices <math>\mat{ P}^2,~\mat {P}^3,~\mat {P}^4,</math> and <math> \mat {P}^n</math> for the Markov chain determined by the transition matrix <math> \mat {P} = \pmatrix{ 1 & 0 \cr 0 & 1 \cr}</math>. Do the same for the transition mat...") |
No edit summary |
||
Line 5: | Line 5: | ||
\newcommand{\secstoprocess}{\all} | \newcommand{\secstoprocess}{\all} | ||
\newcommand{\NA}{{\rm NA}} | \newcommand{\NA}{{\rm NA}} | ||
\newcommand{\mathds}{\mathbb}</math></div> Find the matrices <math>\mat{ P}^2,~\mat {P}^3,~\mat {P}^4,</math> | \newcommand{\mathds}{\mathbb}</math></div> Find the matrices <math>\mat{ P}^2,~\mat {P}^3,~\mat {P}^4,</math> and <math> \mat {P}^n</math> for the Markov chain determined by the transition matrix <math> | ||
and <math> \mat {P}^n</math> for the Markov chain determined by the transition matrix <math> | |||
\mat {P} = | \mat {P} = | ||
\pmatrix{ 1 & 0 \cr 0 & 1 \cr}</math>. Do the same for the transition matrix <math> \mat | \pmatrix{ 1 & 0 \cr 0 & 1 \cr}</math>. Do the same for the transition matrix <math> \mat | ||
{P} = | {P} = | ||
\pmatrix{ 0 & 1 \cr 1 & 0 \cr}</math>. Interpret what happens in each of these | \pmatrix{ 0 & 1 \cr 1 & 0 \cr}</math>. Interpret what happens in each of these processes. | ||
processes. |
Latest revision as of 00:18, 15 June 2024
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Find the matrices [math]\mat{ P}^2,~\mat {P}^3,~\mat {P}^4,[/math] and [math] \mat {P}^n[/math] for the Markov chain determined by the transition matrix [math] \mat {P} = \pmatrix{ 1 & 0 \cr 0 & 1 \cr}[/math]. Do the same for the transition matrix [math] \mat {P} = \pmatrix{ 0 & 1 \cr 1 & 0 \cr}[/math]. Interpret what happens in each of these processes.