exercise:E6fe303a8b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Suppose that a gambler starts with a stake of 0 dollars. <ul><li> Show that the probability that her stake never reaches <math>M</math> before returning to 0 equals <math>1 - p(1 - q_1)</math>. </li> <li> Show that the probability that her stake...")
 
No edit summary
 
Line 6: Line 6:
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Suppose that a gambler starts with a stake of 0 dollars.
\newcommand{\mathds}{\mathbb}</math></div> Suppose that a gambler starts with a stake of 0 dollars.
<ul><li>  Show that the probability that her stake never reaches <math>M</math> before returning to 0 equals
<ul style="list-style-type:lower-alpha"><li>  Show that the probability that her stake never reaches <math>M</math> before returning to 0 equals
<math>1 - p(1 - q_1)</math>.
<math>1 - p(1 - q_1)</math>.
</li>
</li>
<li>  Show that the probability that her stake reaches the value <math>M</math> exactly <math>k</math> times before
<li>  Show that the probability that her stake reaches the value <math>M</math> exactly <math>k</math> times before
returning to 0 equals <math>p(1-q_1)(1 - qq_{M-1})^{k-1}(qq_{M-1})</math>.  '' Hint'':   
returning to 0 equals <math>p(1-q_1)(1 - qq_{M-1})^{k-1}(qq_{M-1})</math>.  '' Hint'':  Use [[exercise:026effa772 |Exercise]].
Use Exercise [[exercise:026effa772 |Exercise]].
</li>
</li>
</ul>
</ul>

Latest revision as of 00:57, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Suppose that a gambler starts with a stake of 0 dollars.

  • Show that the probability that her stake never reaches [math]M[/math] before returning to 0 equals [math]1 - p(1 - q_1)[/math].
  • Show that the probability that her stake reaches the value [math]M[/math] exactly [math]k[/math] times before returning to 0 equals [math]p(1-q_1)(1 - qq_{M-1})^{k-1}(qq_{M-1})[/math]. Hint: Use Exercise.