exercise:087f70d94a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that <math>w_x</math> of Exercise Exercise satisfies the following conditions: <ul><li> <math>w_x = pw_{x + 1} + qw_{x - 1}</math> for <math>x = 1</math>, 2, \ldots,\ <math>T - 1</math>. </li> <li> <math>w_0 = 0</math...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Show that <math>w_x</math> of Exercise [[exercise:8ae7bbfa06 |Exercise]] satisfies
\newcommand{\mathds}{\mathbb}</math></div> Show that <math>w_x</math> of [[exercise:8ae7bbfa06 |Exercise]] satisfies the following conditions:
the
<ul style="list-style-type:lower-alpha"><li> <math>w_x = pw_{x + 1} + qw_{x - 1}</math> for <math>x = 1</math>, 2, ..., <math>T - 1</math>.
following conditions:
<ul><li> <math>w_x = pw_{x + 1} + qw_{x - 1}</math> for <math>x = 1</math>, 2, \ldots,\ <math>T - 1</math>.
</li>
</li>
<li> <math>w_0 = 0</math>.
<li> <math>w_0 = 0</math>.
Line 15: Line 13:
</li>
</li>
</ul>
</ul>
Show that these conditions determine <math>w_x</math>.  Show that, if <math>p = q =
Show that these conditions determine <math>w_x</math>.  Show that, if <math>p = q =1/2</math>, then
1/2</math>, then


<math display="block">
<math display="block">

Latest revision as of 23:04, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that [math]w_x[/math] of Exercise satisfies the following conditions:

  • [math]w_x = pw_{x + 1} + qw_{x - 1}[/math] for [math]x = 1[/math], 2, ..., [math]T - 1[/math].
  • [math]w_0 = 0[/math].
  • [math]w_T = 1[/math].

Show that these conditions determine [math]w_x[/math]. Show that, if [math]p = q =1/2[/math], then

[[math]] w_x = \frac xT [[/math]]

satisfies (a), (b), and (c) and hence is the solution. If [math]p \ne q[/math], show that

[[math]] w_x = \frac{(q/p)^x - 1}{(q/p)^T - 1} [[/math]]

satisfies these conditions and hence gives the probability of the gambler winning.