exercise:26bc28081b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> We considered the two examples of the Drunkard's Walk corresponding to the cases <math>n = 4</math> and <math>n = 5</math> blocks (see Example). Verify that in these two examples the expected time to absorption,...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> We considered the two examples of the Drunkard's
\newcommand{\mathds}{\mathbb}</math></div> We considered the two examples of the Drunkard's Walk corresponding to the cases <math>n = 4</math> and <math>n =5</math> blocks (see [[guide:87cf36f969#exam 11.2.1 |Example]]).  Verify that in these two examples the expected time to absorption, starting at <math>x</math>, is equal to <math>x(n - x)</math>.  See if you can prove that this is true in general.  '' Hint'':
Walk corresponding to the cases <math>n = 4</math> and <math>n =
Show that if <math>f(x)</math> is the expected time to absorption then <math>f(0) = f(n) = 0</math> and
5</math> blocks
(see [[guide:87cf36f969#exam 11.2.1 |Example]]).  Verify that in these two examples the
expected time to
absorption, starting at <math>x</math>, is equal to
<math>x(n - x)</math>.  See if you can prove that this is true in general.  '' Hint'':
Show
that if <math>f(x)</math> is the expected time to absorption then <math>f(0) = f(n) = 0</math>
and


<math display="block">
<math display="block">
f(x) = (1/2)f(x - 1) + (1/2)f(x + 1) + 1
f(x) = (1/2)f(x - 1) + (1/2)f(x + 1) + 1
</math>
</math>
for  <math>0  <  x  <  n</math>.  Show that if <math>f_1(x)</math> and <math>f_2(x)</math> are two solutions, then
for  <math>0  <  x  <  n</math>.  Show that if <math>f_1(x)</math> and <math>f_2(x)</math> are two solutions, then
their difference <math>g(x)</math> is a solution of the equation
their difference <math>g(x)</math> is a solution of the equation

Latest revision as of 23:06, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

We considered the two examples of the Drunkard's Walk corresponding to the cases [math]n = 4[/math] and [math]n =5[/math] blocks (see Example). Verify that in these two examples the expected time to absorption, starting at [math]x[/math], is equal to [math]x(n - x)[/math]. See if you can prove that this is true in general. Hint:

Show that if [math]f(x)[/math] is the expected time to absorption then [math]f(0) = f(n) = 0[/math] and

[[math]] f(x) = (1/2)f(x - 1) + (1/2)f(x + 1) + 1 [[/math]]

for [math]0 \lt x \lt n[/math]. Show that if [math]f_1(x)[/math] and [math]f_2(x)[/math] are two solutions, then their difference [math]g(x)[/math] is a solution of the equation

[[math]] g(x) = (1/2)g(x - 1) + (1/2)g(x + 1)\ . [[/math]]

Also, [math]g(0) = g(n) = 0[/math]. Show that it is not possible for [math]g(x)[/math] to have a strict maximum or a strict minimum at the point [math]i[/math], where [math]1 \le i \le n-1[/math]. Use this to show that [math]g(i) = 0[/math] for all i. This shows that there is at most one solution. Then verify that the function [math]f(x) = x(n-x)[/math] is a solution.