exercise:4c8e0e20c1: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>\mat{P}</math> is the transition matrix of an ergodic chain, then <math>(1/2)(\mat {I} + \mat {P})</math> is the transition matrix of a regular chain. '' Hint'': Use Exercise Exercise.")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>\mat{P}</math> is the transition matrix of an  
\newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>\mat{P}</math> is the transition matrix of an ergodic chain, then <math>(1/2)(\mat {I} + \mat {P})</math> is the transition matrix of a regular chain.  '' Hint'': Use [[exercise:72dca0d567 |Exercise]].
ergodic chain, then <math>(1/2)(\mat {I} + \mat {P})</math> is the transition matrix of a  
regular chain.  '' Hint'': Use Exercise [[exercise:72dca0d567 |Exercise]].

Latest revision as of 22:03, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Prove that if [math]\mat{P}[/math] is the transition matrix of an ergodic chain, then [math](1/2)(\mat {I} + \mat {P})[/math] is the transition matrix of a regular chain. Hint: Use Exercise.