guide:5fd6d5eb7e: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
\chapter*{Appendix A. Properties of Limits} | |||
In this appendix we shall establish the fundamental properties of | |||
limits stated without proof in | |||
[[guide:Ffb82a6ded#thm 1.4.1 |Theorem]]. | |||
Before restating the theorem and giving the proof, | |||
we recall one of the basic facts about inequalities and absolute values, | |||
which we shall use. | |||
Called the '''triangle inequality''', it asserts that, | |||
for any two real numbers <math>a</math> and <math>b</math>, | |||
<math display="block"> | |||
|a \pm b| \leq |a| + |b|. | |||
</math> | |||
This result is stated and proved for <math>a + b</math> [[guide:Ffb82a6ded#thm 1.4.1 |in]]. | |||
It holds equally well for <math>a - b</math>, since | |||
<math display="block"> | |||
|a - b| = |a + (-b)| \leq |a| + |-b| = |a| + |b|. | |||
</math> | |||
The theorem, which we shall prove, is the following: | |||
{{proofcard|Theorem|theorem-1|If <math>\lim_{x \rightarrow a} f(x) = b_1</math>, | |||
and <math>\lim_{x \rightarrow a} g(x) = b_2</math>, then | |||
\item[(i)] <math>\lim_{x \rightarrow a} [f(x) + g(x)] = b_1 + b_2</math>. | |||
\item[(ii)] <math>\lim_{x \rightarrow a} cf(x) = cb_1</math>. | |||
\item[(iii)] <math>\lim_{x \rightarrow a} f(x)g(x) = b_1b_2</math>. | |||
\item[(iv)] <math>\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \frac{b_1}{b_2} \;provided \; b_2 \neq 0</math>.|}} | |||
According to the definition of limit, the hypotheses tell us that, for any positive number <math>\epsilon</math>, there exist positive numbers <math>\delta_1</math>, and <math>\delta_2</math> such that if <math>x</math> is in the domains of both <math>f</math> and <math>g</math> and if <math>0 < |x - a| < \delta_1</math> and <math>0 < |x - a| < \delta_2</math>, then <math>|f(x) - b_1| < \epsilon</math> and <math>|g(x) - b_2| < \epsilon</math>. Where it is relevant in the proofs which follow, we shall assume without explicitly stating it the condition that <math>x</math> lies in the appropriate domain of <math>f</math> or <math>g</math> (or both). | |||
\medskip | |||
''Proof of'' (i). Let <math>\epsilon</math> be an arbitrary positive number. Then there exist positive numbers <math>\delta_1</math> and <math>\delta_2</math> such that <math>|f(x) - b_1| < \frac{\epsilon}{2}</math> whenever <math>0 < |x - a| < \delta_1</math>, and <math>|g(x) - b_2| < \frac{\epsilon}{2}</math>, whenever <math>0 < |x - a| < \delta_2</math>. (It is legitimate to write | |||
<math>\frac{\epsilon}{2}</math> in these inequalities, since the definition specifies the existence of <math>\delta'</math>s for ''any'' positive number <math>\epsilon</math>. Given a choice of <math>\epsilon</math>, we can then take <math>\frac{\epsilon}{2}</math> to be the number which implies the existence of <math>\delta_1</math> and <math>\delta_2</math>.) We set | |||
<math display="block"> | |||
\delta = \mbox{minimum}\; \{ \delta_1, \delta_2 \}. | |||
</math> | |||
Let us now suppose that <math>0 < |x - a| < \delta</math>. It follows that <math>0 < |x - a| < \delta_1</math> and <math>0 < |x - a| < \delta_2</math>, and thence that <math>|f(x) - b_1| < \frac{\epsilon}{2}</math> and <math>|g(x) - b_2| < \frac{\epsilon}{2}</math>. Clearly, | |||
<math display="block"> | |||
|[f(x) + g(x)] - [b_1 + b_2]| = |[f(x) - b_1|] + [g(x) - b_2]|. | |||
</math> | |||
Hence, using the triangle inequality, we obtain | |||
<math display="block"> | |||
|[f(x) + g(x)] - [b_1 + b_2]| < |f(x) - b_1| + |g(x) - b_2| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon . | |||
</math> | |||
Thus we have shown that, for any <math>\epsilon > 0</math>, there exists a <math> \delta > 0</math> such that, whenever <math>0 < |x - a| < \delta</math>, then <math>|[f(x) + g(x)] - [b_1 + b_2]| < \epsilon</math>. By the definition of limit we have therefore proved that | |||
<math display="block"> | |||
\lim_{x \rightarrow a} [f(x) + g(x)] = b_1 + b_2, | |||
</math> | |||
which is the result (i). | |||
\medskip | |||
''Proof of'' (ii). Suppose first that <math>c = 0</math>. Then <math>cf</math> is the constant function with value 0, and <math>cb_1 = 0</math>. Hence | |||
<math display="block"> | |||
|cf(x) - cb_1| = |0 - 0| = 0 , | |||
</math> | |||
for every <math>x</math> in the domain of <math>f</math>. Thus, for any two positive numbers <math>\epsilon</math> and <math>\delta</math>, it is trivially true that | |||
<math display="block"> | |||
|cf(x) - cb_1| < \epsilon, \;\;\;\mbox{whenever}\; 0 < |x - a| < \delta, | |||
</math> | |||
and (ii) is therefore proved in this special case. We next assume that <math>c \neq 0</math>, and choose an arbitrary positive number <math>\epsilon</math>. There then exists a positive number <math>\delta</math> such that | |||
<math display="block"> | |||
|f(x) - cb_1| < \frac{\epsilon}{|c|} , \;\;\;\mbox{whenever}\; 0 < |x - a| < \delta. | |||
</math> | |||
It follows immediately that | |||
<math display="block"> | |||
|cf(x) - cb_1| = |c[ f(x) - b_1]| = |c| |f(x) - b_1| < |c| \frac{\epsilon}{|c|} = \epsilon | |||
</math> | |||
whenever <math>0 < |x - a| < \delta</math>. This completes the proof of (ii). | |||
\medskip | |||
''Proof of'' (iii). Let <math>\epsilon</math> be an arbitrary positive number. Select a positive number <math>M</math> such that <math>|b_1| < M</math> and <math>|b_2| < M</math>. Then there exist positive numbers <math>\delta_1</math>, <math>\delta_2</math>, and <math>\delta_3</math> such that | |||
<math display="block"> | |||
\begin{array}{ll} | |||
|f(x) - b_1| < \frac{\epsilon}{2M}, \;\mbox{provided}\; &0 < |x - a| < \delta_1, \\ | |||
|g(x) - b_2| < \frac{\epsilon}{2M}, \;\mbox{provided}\; &0 < |x - a| < \delta_2,\\ | |||
|g(x) - b_2| < M - |b_2|, \;\mbox{provided}\; &0 < |x - a| < \delta_3. | |||
\end{array} | |||
</math> | |||
We set | |||
<math display="block"> | |||
\delta = \mbox{minimum}\; \{ \delta_1, \delta_2, \delta_3 \}, | |||
</math> | |||
and in the remainder of the argument we assume that <math>0 < |x - a| < \delta</math>. It then follows that all three of the above inequalities hold. Using the last one together with the triangle inequality, we first observe that | |||
<math display="block"> | |||
|g(x)| = |(g(x) - b_2) + b_2| \leq |g(x) - b_2| + |b_2| < (M - |b_2|) + |b_2| = M. | |||
</math> | |||
Next we obtain | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
|f(x)g(x) - b_ib_2| | |||
&=& | f(x)g(x) - b_1g(x) + b_1g(x) - b_1b_2 | \\ | |||
&=& | g(x)[f(x) - b_1] + b_1[g(x) - b_2] | \\ | |||
&\leq& | g(x) [f(x) - b_1] | + |b_1[g(x) - b_2] | \\ | |||
&=& | g(x)| |f(x) - b_1| + | b_1| |g(x) - b_2 |. | |||
\end{eqnarray*} | |||
</math> | |||
Finally, therefore, | |||
<math display="block"> | |||
|f(x)g(x) - b_1b_2| < M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon , | |||
</math> | |||
and the proof of (iii) is finished. | |||
\medskip | |||
''Proof of'' (iv). We shall prove the simpler statement: | |||
<math display="block"> | |||
\lim_{x \rightarrow a} \frac{1}{g(x)} = \frac{1}{b_2}, \;\;\;\mbox{provided}\; b_2 \neq 0. ( 1 ) | |||
</math> | |||
This fact, together with (iii), then implies | |||
<math display="block"> | |||
\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} f(x) \frac{1}{g(x)} = b_1 \frac{1}{b_2} = \frac{b_1}{b_2} , | |||
</math> | |||
which is the result (iv). Since it is assumed that <math>b_2 \neq 0</math>, there exists a number m such that <math>0 < m < |b_2|</math>. Hence there exists a positive number <math>\delta_1</math> such that | |||
<math display="block"> | |||
|g(x) - b_2| < |b_2| - m, | |||
</math> | |||
whenever <math>0 < |x - a| < \delta_1</math>. But | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
|b_2| = |-b_2| &=& |(g(x) - b_2) - g(x)| \\ | |||
&\leq& |g(x) - b_2| + |g(x)| . | |||
\end{eqnarray*} | |||
</math> | |||
Hence, if <math>0 < |x - a| < \delta_1</math>, we have | |||
<math display="block"> | |||
|g(x)| > |b_2| - |g(x) - b_2| > |b_2| - (|b_2| - m) = m . | |||
</math> | |||
Taking reciprocals, we therefore obtain | |||
<math display="block"> | |||
\frac{1}{|g(x)|} < \frac{1}{m}, \;\mbox{whenever}\; 0 < |x - a| < \delta_1. | |||
</math> | |||
Now let <math>\epsilon</math> be an arbitrary positive number. There exists a positive number <math>\delta_2</math> such that | |||
<math display="block"> | |||
|g(x) - b_2| < m |b_2| \epsilon, \;\mbox{whenever}\; 0 < |x - a| < \delta_2. | |||
</math> | |||
We set | |||
<math display="block"> | |||
\delta = \mbox{minimum}\; \{ \delta_1, \delta_2 \}. | |||
</math> | |||
It follows that, if <math>0 < |x - a| < \delta</math>, then | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\Big|\frac{1}{g(x)} - \frac{1}{b_2}\Big| | |||
&=& \Big|\frac{b_2 - g(x)}{b_2 g(x)} \Big| \\ | |||
&=& \frac{1}{|g(x)|} \frac{1}{|b_2|} |g(x) - b_2| \\ | |||
& < & \frac{1}{m} \frac{1}{|b_2|} |g(x) - b_2| \\ | |||
& < & \frac{1}{m |b_2|} m |b_2| \epsilon = \epsilon. | |||
\end{eqnarray*} | |||
</math> | |||
Thus (1) is proved, and, as we have seen, (1) and (iii) imply (iv). This completes the proof of the theorem.==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Revision as of 00:10, 3 November 2024
\chapter*{Appendix A. Properties of Limits} In this appendix we shall establish the fundamental properties of limits stated without proof in Theorem. Before restating the theorem and giving the proof, we recall one of the basic facts about inequalities and absolute values, which we shall use. Called the triangle inequality, it asserts that, for any two real numbers [math]a[/math] and [math]b[/math],
This result is stated and proved for [math]a + b[/math] in. It holds equally well for [math]a - b[/math], since
The theorem, which we shall prove, is the following:
If [math]\lim_{x \rightarrow a} f(x) = b_1[/math], and [math]\lim_{x \rightarrow a} g(x) = b_2[/math], then
\item[(i)] [math]\lim_{x \rightarrow a} [f(x) + g(x)] = b_1 + b_2[/math]. \item[(ii)] [math]\lim_{x \rightarrow a} cf(x) = cb_1[/math]. \item[(iii)] [math]\lim_{x \rightarrow a} f(x)g(x) = b_1b_2[/math]. \item[(iv)] [math]\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \frac{b_1}{b_2} \;provided \; b_2 \neq 0[/math].
According to the definition of limit, the hypotheses tell us that, for any positive number [math]\epsilon[/math], there exist positive numbers [math]\delta_1[/math], and [math]\delta_2[/math] such that if [math]x[/math] is in the domains of both [math]f[/math] and [math]g[/math] and if [math]0 \lt |x - a| \lt \delta_1[/math] and [math]0 \lt |x - a| \lt \delta_2[/math], then [math]|f(x) - b_1| \lt \epsilon[/math] and [math]|g(x) - b_2| \lt \epsilon[/math]. Where it is relevant in the proofs which follow, we shall assume without explicitly stating it the condition that [math]x[/math] lies in the appropriate domain of [math]f[/math] or [math]g[/math] (or both). \medskip Proof of (i). Let [math]\epsilon[/math] be an arbitrary positive number. Then there exist positive numbers [math]\delta_1[/math] and [math]\delta_2[/math] such that [math]|f(x) - b_1| \lt \frac{\epsilon}{2}[/math] whenever [math]0 \lt |x - a| \lt \delta_1[/math], and [math]|g(x) - b_2| \lt \frac{\epsilon}{2}[/math], whenever [math]0 \lt |x - a| \lt \delta_2[/math]. (It is legitimate to write [math]\frac{\epsilon}{2}[/math] in these inequalities, since the definition specifies the existence of [math]\delta'[/math]s for any positive number [math]\epsilon[/math]. Given a choice of [math]\epsilon[/math], we can then take [math]\frac{\epsilon}{2}[/math] to be the number which implies the existence of [math]\delta_1[/math] and [math]\delta_2[/math].) We set
Let us now suppose that [math]0 \lt |x - a| \lt \delta[/math]. It follows that [math]0 \lt |x - a| \lt \delta_1[/math] and [math]0 \lt |x - a| \lt \delta_2[/math], and thence that [math]|f(x) - b_1| \lt \frac{\epsilon}{2}[/math] and [math]|g(x) - b_2| \lt \frac{\epsilon}{2}[/math]. Clearly,
Hence, using the triangle inequality, we obtain
Thus we have shown that, for any [math]\epsilon \gt 0[/math], there exists a [math] \delta \gt 0[/math] such that, whenever [math]0 \lt |x - a| \lt \delta[/math], then [math]|[f(x) + g(x)] - [b_1 + b_2]| \lt \epsilon[/math]. By the definition of limit we have therefore proved that
which is the result (i). \medskip Proof of (ii). Suppose first that [math]c = 0[/math]. Then [math]cf[/math] is the constant function with value 0, and [math]cb_1 = 0[/math]. Hence
for every [math]x[/math] in the domain of [math]f[/math]. Thus, for any two positive numbers [math]\epsilon[/math] and [math]\delta[/math], it is trivially true that
and (ii) is therefore proved in this special case. We next assume that [math]c \neq 0[/math], and choose an arbitrary positive number [math]\epsilon[/math]. There then exists a positive number [math]\delta[/math] such that
It follows immediately that
whenever [math]0 \lt |x - a| \lt \delta[/math]. This completes the proof of (ii). \medskip Proof of (iii). Let [math]\epsilon[/math] be an arbitrary positive number. Select a positive number [math]M[/math] such that [math]|b_1| \lt M[/math] and [math]|b_2| \lt M[/math]. Then there exist positive numbers [math]\delta_1[/math], [math]\delta_2[/math], and [math]\delta_3[/math] such that
We set
and in the remainder of the argument we assume that [math]0 \lt |x - a| \lt \delta[/math]. It then follows that all three of the above inequalities hold. Using the last one together with the triangle inequality, we first observe that
Next we obtain
Finally, therefore,
and the proof of (iii) is finished. \medskip Proof of (iv). We shall prove the simpler statement:
This fact, together with (iii), then implies
which is the result (iv). Since it is assumed that [math]b_2 \neq 0[/math], there exists a number m such that [math]0 \lt m \lt |b_2|[/math]. Hence there exists a positive number [math]\delta_1[/math] such that
whenever [math]0 \lt |x - a| \lt \delta_1[/math]. But
Hence, if [math]0 \lt |x - a| \lt \delta_1[/math], we have
Taking reciprocals, we therefore obtain
Now let [math]\epsilon[/math] be an arbitrary positive number. There exists a positive number [math]\delta_2[/math] such that
We set
It follows that, if [math]0 \lt |x - a| \lt \delta[/math], then
Thus (1) is proved, and, as we have seen, (1) and (iii) imply (iv). This completes the proof of the theorem.==General references== Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.