guide:0115c430d0: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 121: | Line 121: | ||
</math> | </math> | ||
This completes the proof.}} | This completes the proof.}} | ||
By taking <math>c = -1</math>, we get as a corollary [[#thm 1.7.1 | | By taking <math>c = -1</math>, we get as a corollary of [[#thm 1.7.1 |proposition]] and [[#thm 1.7.2 |proposition]] | ||
that | that | ||
Line 152: | Line 152: | ||
\lim_{t \goesto 0}{\frac{0}{t}} = 0. | \lim_{t \goesto 0}{\frac{0}{t}} = 0. | ||
</math>}} | </math>}} | ||
<span id="exam 1.7.1"/> | <span id="exam 1.7.1"/> | ||
'''Example''' | '''Example''' | ||
Let <math>f(x) = x^3</math>, and <math>g(x) = \sqrt{x + 1} \; (x \geq -1)</math>, | Let <math>f(x) = x^3</math>, and <math>g(x) = \sqrt{x + 1} \; (x \geq -1)</math>, | ||
and <math>h(x) = x^2 + 3</math>, | and <math>h(x) = x^2 + 3</math>, | ||
Line 255: | Line 256: | ||
</math> | </math> | ||
This completes the proof of the product rule for differentiation.}} | This completes the proof of the product rule for differentiation.}} | ||
<span id="exam 1.7.2"/> | <span id="exam 1.7.2"/> | ||
'''Example''' | '''Example''' | ||
Suppose we are given the information that | Suppose we are given the information that | ||
the functions <math>f(x) = (x^2 + 2)^3</math> and <math>g(x) = (x^2 + 2)^5</math> | the functions <math>f(x) = (x^2 + 2)^3</math> and <math>g(x) = (x^2 + 2)^5</math> | ||
Line 490: | Line 492: | ||
</math> | </math> | ||
This completes the proof.}} | This completes the proof.}} | ||
Thus, for example, if <math>f(x) = x^{-7}</math>, then <math>f'(x) = - 7x^{-8}</math>. In Section \secref{1.8} we shall show that the formula is actually valid, not only for integers, but for any rational number <math>n</math>. Finally, in Chapter | Thus, for example, if <math>f(x) = x^{-7}</math>, then <math>f'(x) = - 7x^{-8}</math>. In Section \secref{1.8} we shall show that the formula is actually valid, not only for integers, but for any rational number <math>n</math>. Finally, in Chapter [[guide:5103dec63d|Logarithms and Exponential Functions]] we shall prove that <math>(x^a)' = ax^{a-1}</math>, for any real number <math>a</math>. | ||
Let us summarize in a single list the theorems that we have developed for finding derivatives. To provide practice, we shall this time employ the alternative <math>\frac{d}{dx}</math> notation. Let <math>u</math> and <math>v</math> be differentiable functions of <math>x</math>, and <math> c</math> a constant. Then | Let us summarize in a single list the theorems that we have developed for finding derivatives. To provide practice, we shall this time employ the alternative <math>\frac{d}{dx}</math> notation. Let <math>u</math> and <math>v</math> be differentiable functions of <math>x</math>, and <math> c</math> a constant. Then | ||
{{proofcard|Proposition|thm_ddxrules| | {{proofcard|Proposition|thm_ddxrules|<ul style{{=}}"list-style-type:lower-roman"><li><math>\frac{d(u + v)}{dx} = \frac{du}{dx} + \frac{dv}{dx},</math></li> | ||
<li><math>\frac{d(cu)}{dx} = c \frac{du}{dx},</math></li> | |||
<li><math>\frac{dc}{dx} = 0,</math></li> | |||
<li><math>\frac {d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx},</math></li> | |||
<li><math>\frac{dx^n}{dx} = nx^{n-1}, \provx{where $n$ is any integer,}</math></li> | |||
<li><math>\frac{d}{dx} \Bigl( \frac{u}{v} \Bigr) = \frac{v {\frac{du}{dx}} - u {\frac{dv}{dx}} }{v^2}.</math></li>|}} | |||
Note that we have proved these theorems for arbitrary differentiable functions <math>u</math> and <math>v</math>, not just for polynomials and rational functions. | Note that we have proved these theorems for arbitrary differentiable functions <math>u</math> and <math>v</math>, not just for polynomials and rational functions. | ||
'''Example''' | '''Example''' | ||
Let | Let | ||
Line 550: | Line 554: | ||
'''Example''' | '''Example''' | ||
Let <math>f(x) = x^3 + 3x^2 + 1</math>. Then | Let <math>f(x) = x^3 + 3x^2 + 1</math>. Then | ||
Line 573: | Line 578: | ||
==General references== | ==General references== | ||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} | {{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Revision as of 20:23, 4 November 2024
Derivatives of Polynomials and Rational Functions.
Computing [math]f'(x)[/math] from the definition of the derivative by evaluating
can be quite a job. In this section we shall develop a set of theorems from which the derivatives of many functions, including all polynomials and rational functions, can be found easily and, what is more important, in a completely routine way.
If [math]f[/math] and [math]g[/math] are differentiable functions, then their sum [math]f + g[/math] is differentiable. Moreover, [math](f + g)' = f' + g'[/math].
Let [math]a[/math] be a number in the domain of [math]f + g[/math]. Recall that by the definition of the sum of two functions
If [math]f[/math] is a differentiable function and [math]c[/math] is a constant, then [math]cf[/math] is differentiable and [math](cf)' = cf'[/math].
For any number a in the domain of [math]f[/math], we have [math](cf)(a) = cf(a)[/math]. Hence
By taking [math]c = -1[/math], we get as a corollary of proposition and proposition that
The derivative of any constant function is the constant function zero; i.e.,
Recall that we allow ourselves the liberty of denoting a real number and the constant function whose value is that real number by the same letter. Doing so here, we have
Example
Let [math]f(x) = x^3[/math], and [math]g(x) = \sqrt{x + 1} \; (x \geq -1)[/math],
and [math]h(x) = x^2 + 3[/math],
and suppose we are given the information that
It follows from the three theorems developed so far in this section that the derivatives of the functions (a)[math]5x^3 - 2 \sqrt{x+1}[/math], (b)[math]x^2[/math], (c)[math]3x^3 + 13x^2 + 7[/math], are, respectively, (a') [math]15x^2 - \frac{1}{\sqrt{x + 1}}[/math], (b') [math]2x[/math], (c') [math]9x^2 + 26x[/math].
For example, to get (b'), we write [math]x^2[/math] in the form [math](x^2 + 3) - 3[/math]. Then
The others are equally routine.
The next theorem deals with the derivative of the product of two functions and its conclusion is perhaps unexpected. Note that it does not turn out that the derivative of a product is the product of the derivatives.
If [math]f[/math] and [math]g[/math] are differentiable functions, then their product [math]fg[/math] is differentiable. Moreover, [math](fg)' = f'g + g'f[/math].
Let [math]a[/math] be a number in the domain of [math]fg[/math]. By the definition of the product of two functions we have
Example
Suppose we are given the information that
the functions [math]f(x) = (x^2 + 2)^3[/math] and [math]g(x) = (x^2 + 2)^5[/math]
have derivatives
Find the derivative of [math]f(x)g(x) = (x^2 + 2)^8[/math]. Theorem, which is sometimes called Leibnitz's Rule, states that
Hence
The graph of the identity function [math]x[/math]
is the straight line defined by the equation [math]y = x[/math],
which passes through the origin and has constant slope 1.
It follows that the derivative of the identity function
is the constant function 1. Thus
We can apply the product (Leibnitz's) rule and obtain
Since [math]x^3 = x{x^2}[/math], and we have just found the derivative of each factor, we can use the product rule again to get
Again,
These results suggest not only the statement of the next theorem, but also how to prove it.
If [math]x[/math] is the identity function and [math]n[/math] is a positive integer, then [math](x^n)' = nx^{n-1}[/math].
{{{4}}}
This is an example of a proof by mathematical induction. The reasoning can be paraphrased like this: Suppose I know that I can get on the bottom rung of a ladder. Suppose further that, if I am standing on any rung, then I can reach the next rung. It follows that I can climb the ladder. Example
Find the derivatives of the polynomials:
The answers are immediate:
It should be clear that, as a result of the rules developed so far, the derivative of any polynomial function can be computed immediately and in a purely mechanical way. We turn next to the derivative of a ratio.
If [math]f[/math] and [math]g[/math] are differerentiable functions, then the quotient [math]\frac{f}{g}[/math] is differentiable [if [math]g(a) = 0[/math], then [math]\Bigl( \frac{f}{g} \Bigr) (a)[/math] is not defined]. Moreover,
We first prove that the function [math]\frac{1}{g}[/math] is differentiable at a number [math]a[/math] in its domain provided [math]g(a) \neq 0[/math]. By definition,
Note that since [math]g[/math] is continuous at [math]a[/math] [see Theorem (6.1)] and [math]g(a) \neq 0[/math], we know that [math]g(a + t) \neq 0[/math] for sufficiently small values of [math]t[/math]. Since
Example
Find the derivatives of the following rational functions:
Applying our six rules, we get
It is important to realize that the symmetry present in the product rule is missing in the quotient rule. For the former, order is immaterial: The prime appears once on one factor and once on the other, and that is all there is to remember. This is not so for the quotient rule, however, where the wrong order will result in the wrong sign in the answer. There is no help for it but to memorize the formula precisely.
The formula for the derivative of [math]x^n[/math] has been proved only if [math]n[/math] is a non-negative integer. (It holds for [math]n = 0[/math] because [math]x^0 = 1[/math].) The next theorem enlarges the scope of the formula to include all integers.
If [math]x[/math] is the identity function and [math]n[/math] is an integer (positive, negative, or zero), then [math](x^n)' = nx^{n-1}[/math].
We shall assume that [math]n[/math] is a negative integer, since the theorem is known to be true otherwise. Then [math]m = -n[/math] is a positive integer, and [math]x^n =\frac{1}{x^m}[/math]. Using (2) and (7.5), we get
Thus, for example, if [math]f(x) = x^{-7}[/math], then [math]f'(x) = - 7x^{-8}[/math]. In Section \secref{1.8} we shall show that the formula is actually valid, not only for integers, but for any rational number [math]n[/math]. Finally, in Chapter Logarithms and Exponential Functions we shall prove that [math](x^a)' = ax^{a-1}[/math], for any real number [math]a[/math]. Let us summarize in a single list the theorems that we have developed for finding derivatives. To provide practice, we shall this time employ the alternative [math]\frac{d}{dx}[/math] notation. Let [math]u[/math] and [math]v[/math] be differentiable functions of [math]x[/math], and [math] c[/math] a constant. Then
- [math]\frac{d(u + v)}{dx} = \frac{du}{dx} + \frac{dv}{dx},[/math]
- [math]\frac{d(cu)}{dx} = c \frac{du}{dx},[/math]
- [math]\frac{dc}{dx} = 0,[/math]
- [math]\frac {d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx},[/math]
- [math]\frac{dx^n}{dx} = nx^{n-1}, \provx{where $n$ is any integer,}[/math]
- [math]\frac{d}{dx} \Bigl( \frac{u}{v} \Bigr) = \frac{v {\frac{du}{dx}} - u {\frac{dv}{dx}} }{v^2}.[/math]
Note that we have proved these theorems for arbitrary differentiable functions [math]u[/math] and [math]v[/math], not just for polynomials and rational functions.
Example
Let
Then
We have seen in this section that the derivative of a polynomial is another polynomial, and the derivative of a rational function is a new rational function. Once we have found the derivative [math]f'[/math] of any function [math]f[/math], we can go on and find the derivative of [math]f'[/math]. The new function, denoted [math]f''[/math], is called the second derivative of [math]f[/math]. Clearly,
The third derivative, written [math]f'''[/math], is the derivative of the second derivative, and, in principle, we can go on forever and form derivatives of as high order as we like. It would obviously be absurd to write the seventeenth derivative with seventeen primes, so we adopt the alternative rotation [math]f^{(n)}[/math] for the nth derivative of [math]f[/math]. The differential notation for the higher derivatives is based on the idea that [math]\frac{d}{dx}[/math] is a function, sometimes called an operator, which assigns to a function its derivative with respect to [math]x[/math]. Hence we write
In addition, if a variable is used to denote a function, for example, if [math]y = f(x)[/math], we also use the expressions
Example
Let [math]f(x) = x^3 + 3x^2 + 1[/math]. Then
As another example, let [math]y = \frac{1}{x+ 1}[/math]. Then
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.