exercise:74ff487458: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li>The equation <math>x^3 + y^3 - 6xy = 0</math> implicitly defines a differentiable function <math>f(x)</math> whose graph | ||
The equation <math>x^3 + y^3 - 6xy = 0</math> | |||
implicitly defines a differentiable function <math>f(x)</math> whose graph | |||
passes through <math>(3,3)</math>. Compute <math>f^\prime (3)</math>.</li> | passes through <math>(3,3)</math>. Compute <math>f^\prime (3)</math>.</li> | ||
<li>How many differentiable functions <math>f(x)</math> having a small | <li>How many differentiable functions <math>f(x)</math> having a small | ||
interval about the number <math>3</math> as a common domain are | interval about the number <math>3</math> as a common domain are | ||
implicitly defined by the equation in | implicitly defined by the equation in (a)?</li> | ||
<li>Compute <math>f^\prime (3)</math> for each of them.</li> | <li>Compute <math>f^\prime (3)</math> for each of them.</li> | ||
</ul> | </ul> |
Latest revision as of 23:34, 22 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- The equation [math]x^3 + y^3 - 6xy = 0[/math] implicitly defines a differentiable function [math]f(x)[/math] whose graph passes through [math](3,3)[/math]. Compute [math]f^\prime (3)[/math].
- How many differentiable functions [math]f(x)[/math] having a small interval about the number [math]3[/math] as a common domain are implicitly defined by the equation in (a)?
- Compute [math]f^\prime (3)[/math] for each of them.