exercise:74ff487458: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{1.9.3a}
<li>The equation <math>x^3 + y^3 - 6xy = 0</math> implicitly defines a differentiable function <math>f(x)</math> whose graph
The equation <math>x^3 + y^3 - 6xy = 0</math> (see [[#fig 1.41|Figure]])
implicitly defines a differentiable function <math>f(x)</math> whose graph
passes through <math>(3,3)</math>.  Compute <math>f^\prime (3)</math>.</li>
passes through <math>(3,3)</math>.  Compute <math>f^\prime (3)</math>.</li>
<li>How many differentiable functions <math>f(x)</math> having a small
<li>How many differentiable functions <math>f(x)</math> having a small
interval about the number <math>3</math> as a common domain are
interval about the number <math>3</math> as a common domain are
implicitly defined by the equation in \ref{ex1.9.3a}?</li>
implicitly defined by the equation in (a)?</li>
<li>Compute <math>f^\prime (3)</math> for each of them.</li>
<li>Compute <math>f^\prime (3)</math> for each of them.</li>
</ul>
</ul>

Latest revision as of 23:34, 22 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • The equation [math]x^3 + y^3 - 6xy = 0[/math] implicitly defines a differentiable function [math]f(x)[/math] whose graph passes through [math](3,3)[/math]. Compute [math]f^\prime (3)[/math].
  • How many differentiable functions [math]f(x)[/math] having a small interval about the number [math]3[/math] as a common domain are implicitly defined by the equation in (a)?
  • Compute [math]f^\prime (3)[/math] for each of them.