exercise:C5f086dc94: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{2.2.10a}
<li>Graph the set of ordered pairs <math>(x,y)</math> such that
Graph the set of ordered pairs <math>(x,y)</math> such that
<math>4x^2 + y^2 = 8</math>.  The graph is called an ellipse.</li>
<math>4x^2 + y^2 = 8</math>.  The graph is called an ellipse.</li>
<li>Find all ordered pairs <math>(x,y)</math>, such that <math>4x^2 + y^2 = 8</math>
<li>Find all ordered pairs <math>(x,y)</math>, such that <math>4x^2 + y^2 = 8</math>
Line 40: Line 39:
<li>Find the dimensions of the largest (in area) rectangle which
<li>Find the dimensions of the largest (in area) rectangle which
has sides parallel to the <math>x</math>-axis and the <math>y</math>-axis and is
has sides parallel to the <math>x</math>-axis and the <math>y</math>-axis and is
inscribed in the ellipse of \ref{ex2.2.10a}.</li>
inscribed in the ellipse of (a).</li>
</ul>
</ul>

Latest revision as of 23:43, 22 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • Graph the set of ordered pairs [math](x,y)[/math] such that [math]4x^2 + y^2 = 8[/math]. The graph is called an ellipse.
  • Find all ordered pairs [math](x,y)[/math], such that [math]4x^2 + y^2 = 8[/math] and [math]4xy[/math] is a maximum.
  • Find the dimensions of the largest (in area) rectangle which has sides parallel to the [math]x[/math]-axis and the [math]y[/math]-axis and is inscribed in the ellipse of (a).