exercise:A2f2d0a292: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 35: Line 35:


<math display="block">
<math display="block">
f(x) = \dilemma{\frac1x, & for\dilemma{-1 \leq x  <  0,}{0  <  x \leq 1,}}
f(x) = \begin{cases}\frac1x, \textrm{for} \quad \begin{cases}-1 \leq x  <  0,\\ 0  <  x \leq 1,\end{cases}\\
{0, & \mbox{for </math>x = 0<math>}.}
0, \mbox{for $x = 0$}.\end{cases}
</math>
</math>
This real-valued function is defined on the closed interval </math>[-1,1]<math>.
 
Draw the graph of </math>f(x)$ and explain why this function has neither
This real-valued function is defined on the closed interval <math>[-1,1]</math>. Draw the graph of <math>f(x)</math> and explain why this function has neither absolute maximum nor absolute minimum points.
absolute maximum nor absolute minimum points.

Latest revision as of 00:54, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let

[[math]] f(x) = \begin{cases}\frac1x, \textrm{for} \quad \begin{cases}-1 \leq x \lt 0,\\ 0 \lt x \leq 1,\end{cases}\\ 0, \mbox{for $x = 0$}.\end{cases} [[/math]]

This real-valued function is defined on the closed interval [math][-1,1][/math]. Draw the graph of [math]f(x)[/math] and explain why this function has neither absolute maximum nor absolute minimum points.