exercise:Eacda3e256: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 31: | Line 31: | ||
\newcommand{\conj}[1]{\overline{#1}} | \newcommand{\conj}[1]{\overline{#1}} | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
\renewcommand{\d}{d} | |||
</math></div> | </math></div> | ||
Find the following differentials. | Find the following differentials. | ||
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\d(x^2 + x + 1) = \cdots</math></li> | <ul style{{=}}"list-style-type:lower-alpha"><li><math>\d(x^2 + x + 1) = \cdots</math></li> | ||
<li><math>\d(7x + 2) = \cdots</math></li> | <li><math>\d(7x + 2) = \cdots</math></li> |
Latest revision as of 00:25, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\renewcommand{\d}{d}
[/math]
Find the following differentials.
- [math]\d(x^2 + x + 1) = \cdots[/math]
- [math]\d(7x + 2) = \cdots[/math]
- [math]\d(x^3+1)(5x-1)^3 = \cdots[/math]
- [math]\d\left( \frac{x-1}{x+1} \right) = \cdots[/math]
- [math]\d u^7 = \cdots[/math]
- [math]\d \left( \frac{u^2}{v^2} \right) = \cdots[/math]
- [math]\d(az^2 + bz + c) = \cdots[/math] ([math]a[/math], [math]b[/math], and [math]c[/math] are constants)
- [math]\d\sqrt{1 + \sqrt{1+x}} = \cdots[/math]
- [math]\d x = \cdots[/math]
- [math]\d (u^2 + 2)(v^3 - 1) = \cdots[/math]