exercise:8c7814d1ff: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 33: Line 33:
</math></div>
</math></div>
Assume that <math>0  <  c  <  a</math>.
Assume that <math>0  <  c  <  a</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{3.3.7a}
<li>Find the distance between <math>(x,y)</math> and <math>(-c,0)</math>.</li>
Find the distance between <math>(x,y)</math> and <math>(-c,0)</math>.</li>
<li>Find the distance between <math>(x,y)</math> and the line <math>x = -\frac{a^2}c</math>.</li>
<li></li>
<li>lab{3.3.7b}
Find the distance between <math>(x,y)</math> and the line <math>x = -\frac{a^2}c</math>.</li>
<li>Find the locus of points <math>(x,y)</math> such that the ratio between
<li>Find the locus of points <math>(x,y)</math> such that the ratio between
the distance in \ref{ex3.3.7a} and the distance in \ref{ex3.3.7b}
the distance in (a) and the distance in (b)
is a constant <math>\frac ca</math>.</li>
is a constant <math>\frac ca</math>.</li>
</ul>
</ul>

Latest revision as of 00:48, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Assume that [math]0 \lt c \lt a[/math].

  • Find the distance between [math](x,y)[/math] and [math](-c,0)[/math].
  • Find the distance between [math](x,y)[/math] and the line [math]x = -\frac{a^2}c[/math].
  • Find the locus of points [math](x,y)[/math] such that the ratio between the distance in (a) and the distance in (b) is a constant [math]\frac ca[/math].