exercise:Ee40bd229d: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Let <math>G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt</math>,
Let <math>G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt</math>, for <math>x  >  0</math>.
for <math>x  >  0</math>.
 
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{4.5.8a}
<li>Using just the Fundamental Theorem, find <math>G^\prime(x)</math> and <math>G^\prime(2)</math>.</li>
Using just the Fundamental Theorem,
<li>Evaluate <math>G(x)</math> as a rational function of <math>x</math> by finding
find <math>G^\prime(x)</math> and <math>G^\prime(2)</math>.</li>
<li></li>
<li>lab{4.5.8b}
Evaluate <math>G(x)</math> as a rational function of <math>x</math> by finding
an antiderivative of <math>t + \frac1{t^2}</math>.</li>
an antiderivative of <math>t + \frac1{t^2}</math>.</li>
<li>Take the derivative of <math>G(x)</math> as found in \ref{ex4.5.8b}
<li>Take the derivative of <math>G(x)</math> as found in (b) and thereby check (a).</li>
and thereby check \ref{ex4.5.8a}.</li>
</ul>
</ul>

Latest revision as of 22:09, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt[/math], for [math]x \gt 0[/math].

  • Using just the Fundamental Theorem, find [math]G^\prime(x)[/math] and [math]G^\prime(2)[/math].
  • Evaluate [math]G(x)[/math] as a rational function of [math]x[/math] by finding an antiderivative of [math]t + \frac1{t^2}[/math].
  • Take the derivative of [math]G(x)[/math] as found in (b) and thereby check (a).