exercise:Ee40bd229d: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
Let <math>G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt</math>, | Let <math>G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt</math>, for <math>x > 0</math>. | ||
for <math>x > 0</math>. | |||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li>Using just the Fundamental Theorem, find <math>G^\prime(x)</math> and <math>G^\prime(2)</math>.</li> | ||
Using just the Fundamental Theorem, | <li>Evaluate <math>G(x)</math> as a rational function of <math>x</math> by finding | ||
find <math>G^\prime(x)</math> and <math>G^\prime(2)</math>.</li> | |||
<li> | |||
Evaluate <math>G(x)</math> as a rational function of <math>x</math> by finding | |||
an antiderivative of <math>t + \frac1{t^2}</math>.</li> | an antiderivative of <math>t + \frac1{t^2}</math>.</li> | ||
<li>Take the derivative of <math>G(x)</math> as found in | <li>Take the derivative of <math>G(x)</math> as found in (b) and thereby check (a).</li> | ||
and thereby check | |||
</ul> | </ul> |
Latest revision as of 22:09, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]G(x) = \int_1^x \left( t + \frac1{t^2} \right) \; dt[/math], for [math]x \gt 0[/math].
- Using just the Fundamental Theorem, find [math]G^\prime(x)[/math] and [math]G^\prime(2)[/math].
- Evaluate [math]G(x)[/math] as a rational function of [math]x[/math] by finding an antiderivative of [math]t + \frac1{t^2}[/math].
- Take the derivative of [math]G(x)[/math] as found in (b) and thereby check (a).