exercise:Fbb7c85bd3: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 34: Line 34:
Draw the graphs of the equations <math>y = x^2</math>
Draw the graphs of the equations <math>y = x^2</math>
and <math>y = 4</math>, and label the region <math>R</math> bounded by them.
and <math>y = 4</math>, and label the region <math>R</math> bounded by them.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{4.7.9a}
<li>
Express the area of <math>R</math> as an integral with respect
Express the area of <math>R</math> as an integral with respect
to <math>x</math> using \ref{thm 4.7.1}.
to <math>x</math> using [[guide:8310ca7964#theorem-1|Theorem]].
Evaluate the integral.</li>
Evaluate the integral.</li>
<li>Similarly, express the area of <math>R</math> as an integral with
<li>Similarly, express the area of <math>R</math> as an integral with
respect to <math>y</math> using the counterpart of \ref{thm 4.7.1}
respect to <math>y</math> using the counterpart of [[guide:8310ca7964#theorem-1|Theorem]]
for functions of <math>y</math>.  Evaluate the integral and
for functions of <math>y</math>.  Evaluate the integral and
check the answer to \ref{ex4.7.9a}.</li>
check the answer to (a).</li>
</ul>
</ul>

Latest revision as of 22:19, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Draw the graphs of the equations [math]y = x^2[/math] and [math]y = 4[/math], and label the region [math]R[/math] bounded by them.

  • Express the area of [math]R[/math] as an integral with respect to [math]x[/math] using Theorem. Evaluate the integral.
  • Similarly, express the area of [math]R[/math] as an integral with respect to [math]y[/math] using the counterpart of Theorem for functions of [math]y[/math]. Evaluate the integral and check the answer to (a).