exercise:Fbb7c85bd3: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 34: | Line 34: | ||
Draw the graphs of the equations <math>y = x^2</math> | Draw the graphs of the equations <math>y = x^2</math> | ||
and <math>y = 4</math>, and label the region <math>R</math> bounded by them. | and <math>y = 4</math>, and label the region <math>R</math> bounded by them. | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Express the area of <math>R</math> as an integral with respect | Express the area of <math>R</math> as an integral with respect | ||
to <math>x</math> using | to <math>x</math> using [[guide:8310ca7964#theorem-1|Theorem]]. | ||
Evaluate the integral.</li> | Evaluate the integral.</li> | ||
<li>Similarly, express the area of <math>R</math> as an integral with | <li>Similarly, express the area of <math>R</math> as an integral with | ||
respect to <math>y</math> using the counterpart of | respect to <math>y</math> using the counterpart of [[guide:8310ca7964#theorem-1|Theorem]] | ||
for functions of <math>y</math>. Evaluate the integral and | for functions of <math>y</math>. Evaluate the integral and | ||
check the answer to | check the answer to (a).</li> | ||
</ul> | </ul> |
Latest revision as of 22:19, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Draw the graphs of the equations [math]y = x^2[/math] and [math]y = 4[/math], and label the region [math]R[/math] bounded by them.
- Express the area of [math]R[/math] as an integral with respect to [math]x[/math] using Theorem. Evaluate the integral.
- Similarly, express the area of [math]R[/math] as an integral with respect to [math]y[/math] using the counterpart of Theorem for functions of [math]y[/math]. Evaluate the integral and check the answer to (a).