exercise:D4d07d1b5a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 33: Line 33:
</math></div>
</math></div>
Assume that <math>a_1  >  a_2  >  1</math>.
Assume that <math>a_1  >  a_2  >  1</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{5.4.12a}
<li>Using the definition of <math>a^x</math>,
Using the definition of <math>a^x</math>,
show that, if <math>x  >  0</math>, then <math>{a_1}^x  >  {a_2}^x</math>.</li>
show that, if <math>x  >  0</math>, then <math>{a_1}^x  >  {a_2}^x</math>.</li>
<li>Using \ref{ex5.4.12a}, show that, if <math>x  <  0</math>,
<li>Using (a), show that, if <math>x  <  0</math>, then <math>{a_1}^x  <  {a_2}^x</math>.</li>
then <math>{a_1}^x  <  {a_2}^x</math>.</li>
</ul>
</ul>

Latest revision as of 23:39, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Assume that [math]a_1 \gt a_2 \gt 1[/math].

  • Using the definition of [math]a^x[/math], show that, if [math]x \gt 0[/math], then [math]{a_1}^x \gt {a_2}^x[/math].
  • Using (a), show that, if [math]x \lt 0[/math], then [math]{a_1}^x \lt {a_2}^x[/math].