exercise:B0046b0c67: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 37: Line 37:
<math>\dydx = -ky</math>.  The latter equation is similar to
<math>\dydx = -ky</math>.  The latter equation is similar to
<math>\dydx = y</math>, which has <math>e^x</math> for a solution.
<math>\dydx = y</math>, which has <math>e^x</math> for a solution.
With this similarity in mind,
With this similarity in mind, it is not hard to guess, and then verify, that <math>y = e^{-kx}</math> is a solution to the original equation.
it is not hard to guess, and then verify,
The problem is now to show that ''every'' solution is a constant multiple of
that <math>y = e^{-kx}</math> is a solution to the original equation.
<math>e^{-kx}</math>.  Prove this fact by assuming that <math>y = f(x)</math> is an arbitrary solution of <math>\dydx + ky = 0</math> and then showing that the derivative of the quotient <math>\frac{f(x)}{e^{-kx}}</math> is zero.
The problem is now to show that ''every''
solution is a constant multiple of
<math>e^{-kx}</math>.  Prove this fact by assuming that <math>y = f(x)</math>
is an arbitrary solution of
<math>\dydx + ky = 0</math> and then showing that the derivative
of the quotient <math>\frac{f(x)}{e^{-kx}}</math> is zero.
(See Problem \ref{ex5.3.8}.)

Latest revision as of 23:02, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

An alternative approach to solving the linear differential equation [math]\dydx + ky = 0[/math] is to write it as [math]\dydx = -ky[/math]. The latter equation is similar to [math]\dydx = y[/math], which has [math]e^x[/math] for a solution. With this similarity in mind, it is not hard to guess, and then verify, that [math]y = e^{-kx}[/math] is a solution to the original equation. The problem is now to show that every solution is a constant multiple of [math]e^{-kx}[/math]. Prove this fact by assuming that [math]y = f(x)[/math] is an arbitrary solution of [math]\dydx + ky = 0[/math] and then showing that the derivative of the quotient [math]\frac{f(x)}{e^{-kx}}[/math] is zero.