exercise:46de031dfc: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li>Show directly that <math>\frac{2x-3}{(x-2)^2}</math> | ||
Show directly that <math>\frac{2x-3}{(x-2)^2}</math> | |||
can be written in the form | can be written in the form | ||
<math>\frac{A}{x-2} + \frac{B}{(x-2)^2}</math> | <math>\frac{A}{x-2} + \frac{B}{(x-2)^2}</math> | ||
Line 40: | Line 39: | ||
<math>\frac{2x-3}{(x-2)^2} = | <math>\frac{2x-3}{(x-2)^2} = | ||
\frac{2(x-2)+1}{(x-2)^2}</math>.</li> | \frac{2(x-2)+1}{(x-2)^2}</math>.</li> | ||
<li> | <li> | ||
Following the method in \ref{ex7.4.5a}, show that <math>\frac{ax+b}{(x-k)^2}</math> can always be | |||
Following the method in \ref{ex7.4.5a}, | written <math>\frac{A}{x-k} + \frac{B}{(x-k)^2}</math>, where <math>A</math> and <math>B</math> are constants.</li> | ||
show that <math>\frac{ax+b}{(x-k)^2}</math> can always be | <li>Extend the result in (b) by factoring, completing the square, and dividing to show directly that | ||
written <math>\frac{A}{x-k} + \frac{B}{(x-k)^2}</math>, | |||
where <math>A</math> and <math>B</math> are constants.</li> | |||
<li>Extend the result in | |||
completing the square, and dividing to show | |||
directly that | |||
<math display="block"> | <math display="block"> |
Latest revision as of 01:25, 24 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Show directly that [math]\frac{2x-3}{(x-2)^2}[/math] can be written in the form [math]\frac{A}{x-2} + \frac{B}{(x-2)^2}[/math] by first writing [math]\frac{2x-3}{(x-2)^2} = \frac{2(x-2)+1}{(x-2)^2}[/math].
- Following the method in \ref{ex7.4.5a}, show that [math]\frac{ax+b}{(x-k)^2}[/math] can always be written [math]\frac{A}{x-k} + \frac{B}{(x-k)^2}[/math], where [math]A[/math] and [math]B[/math] are constants.
- Extend the result in (b) by factoring, completing the square, and dividing to show directly that
[[math]] \frac{ax^2+bx+c}{(x-k)^3} \: \mbox{can be written} \: \frac{A}{x-k}+\frac{B}{(x-k)^2}+\frac{C}{(x-k)^3} [[/math]]where [math]A[/math], [math]B[/math] and [math]C[/math] are constants.