exercise:Ebcf5c84f1: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 31: Line 31:
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
</math></div>
</math></div>
For each of the following parametrization,
For each of the following parametrization,
Line 36: Line 54:
graph is the parametrized curve
graph is the parametrized curve
<ul style{{=}}"list-style-type:lower-alpha"><li><math>P(t) = (t^2,t)</math>, \quad <math>-\infty  <  t  <  \infty</math>.</li>
<ul style{{=}}"list-style-type:lower-alpha"><li><math>P(t) = (t^2,t)</math>, \quad <math>-\infty  <  t  <  \infty</math>.</li>
<li></li>
<li>
<li>lab{10.1.4b}
<math>\dilemma{x=e^{3t},}{y=e^t, & -\infty  <  t  <  \infty.}</math></li>
<math>\dilemma{x=e^{3t},}{y=e^t, & -\infty  <  t  <  \infty.}</math></li>
<li></li>
<li>
<li>lab{10.1.4c}
<math>\dilemma{x=e^t+e^{-t},}
<math>\dilemma{x=e^t+e^{-t},}
{y=e^t-e^{-t}, & -\infty  <  t  <  \infty.}</math></li>
{y=e^t-e^{-t}, & -\infty  <  t  <  \infty.}</math></li>
</ul>
</ul>
[For \ref{ex10.1.4b} and \ref{ex10.1.4c}, you
 
will need in addition to the equation
[For (b) and (c), you will need in addition to the equation <math>F(x,y) = c</math>, the inequality <math>x > 0</math>.]
<math>F(x,y) = c</math>, the inequality <math>x > 0</math>.]

Latest revision as of 20:43, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} \newcommand{\dilemma}[2] { \left\{ \begin{array}{ll} #1 \\ #2 \end{array} \right. } \newcommand{\trilemma}[3] { \left\{ \begin{array}{ll} #1 \\ #2 \\ #3 \end{array} \right. } [/math]

For each of the following parametrization, find an equation [math]F(x,y) = c[/math] whose graph is the parametrized curve

  • [math]P(t) = (t^2,t)[/math], \quad [math]-\infty \lt t \lt \infty[/math].
  • [math]\dilemma{x=e^{3t},}{y=e^t, & -\infty \lt t \lt \infty.}[/math]
  • [math]\dilemma{x=e^t+e^{-t},} {y=e^t-e^{-t}, & -\infty \lt t \lt \infty.}[/math]

[For (b) and (c), you will need in addition to the equation [math]F(x,y) = c[/math], the inequality [math]x \gt 0[/math].]