exercise:Ba0836a760: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 35: | Line 35: | ||
<math>r=\frac1{1+\cos\theta}</math> in polar coordinates | <math>r=\frac1{1+\cos\theta}</math> in polar coordinates | ||
is a parabola similar to the one discussed in | is a parabola similar to the one discussed in | ||
[[guide:3cc850dbe4#exam 10.6.3|Example]]. | |||
<ul style{{=}}"list-style-type:lower-alpha"><li>Draw the parabola, and show the region <math>R</math> | <ul style{{=}}"list-style-type:lower-alpha"><li>Draw the parabola, and show the region <math>R</math> | ||
bounded by this curve and the line | bounded by this curve and the line | ||
<math>\theta=\frac\pi2</math>.</li> | <math>\theta=\frac\pi2</math>.</li> | ||
<li> | <li> | ||
Express <math>\mbox{''area''}(R)</math> as a definite | Express <math>\mbox{''area''}(R)</math> as a definite | ||
integral using the integral formula for area | integral using the integral formula for area | ||
in polar coordinates.</li> | in polar coordinates.</li> | ||
<li>Evaluate the integral in part | <li>Evaluate the integral in part (b) using the trigonometric substitution <math>z=\tan \frac\theta2</math> (see | ||
trigonometric substitution <math>z=\tan \frac\theta2</math> (see | [[guide:D770d825e5#eq7.5.1 |equation]]) and the Change of Variable Theorem for Definite Integrals.</li> | ||
[[guide:D770d825e5#eq7.5.1 |equation]]) and the Change of Variable | |||
Theorem for Definite Integrals.</li> | |||
<li>Write this curve as the graph of an equation | <li>Write this curve as the graph of an equation | ||
in <math>x</math>- and <math>y</math>-coordinates, | in <math>x</math>- and <math>y</math>-coordinates, | ||
and thence compute ''area''(R).</li> | and thence compute ''area''(R).</li> | ||
</ul> | </ul> |
Latest revision as of 00:24, 26 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
The curve defined by the equation [math]r=\frac1{1+\cos\theta}[/math] in polar coordinates is a parabola similar to the one discussed in Example.
- Draw the parabola, and show the region [math]R[/math] bounded by this curve and the line [math]\theta=\frac\pi2[/math].
- Express [math]\mbox{''area''}(R)[/math] as a definite integral using the integral formula for area in polar coordinates.
- Evaluate the integral in part (b) using the trigonometric substitution [math]z=\tan \frac\theta2[/math] (see equation) and the Change of Variable Theorem for Definite Integrals.
- Write this curve as the graph of an equation in [math]x[/math]- and [math]y[/math]-coordinates, and thence compute area(R).