excans:237dbe9dad: Difference between revisions
From Stochiki
(Created page with "'''Solution: B''' Let <math>X</math> be the number of burglaries. Then, <math display = "block"> \begin{align*} \operatorname{E}(X | X \geq 2) = \frac{\sum_{x=2}^{\infty}xp(...") |
mNo edit summary |
||
Line 1: | Line 1: | ||
'''Solution: | '''Solution: D''' | ||
The cumulative distribution function for the exponential distribution is | |||
<math display = "block"> | |||
F(x) = 1-e^{-\lambda x} = 1-e^{-x/\mu} = 1-e^{-x/100}, x > 0. | |||
</math> | |||
From the given probability data, | |||
<math display = "block"> | <math display = "block"> | ||
\begin{align*} | \begin{align*} | ||
F(50) - F(40) &= F(r) - F(60) \\ | |||
1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\ | |||
e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\ | |||
e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = =0.4850 \\ | |||
-r/100 &= \ln(0.4850) = -0.7236 \\ | |||
r &= 72.36. | |||
\end{align*} | \end{align*} | ||
</math> | </math> | ||
{{soacopyright | 2023}} | {{soacopyright | 2023}} |
Revision as of 22:38, 2 May 2023
Solution: D
The cumulative distribution function for the exponential distribution is
[[math]]
F(x) = 1-e^{-\lambda x} = 1-e^{-x/\mu} = 1-e^{-x/100}, x \gt 0.
[[/math]]
From the given probability data,
[[math]]
\begin{align*}
F(50) - F(40) &= F(r) - F(60) \\
1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\
e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\
e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = =0.4850 \\
-r/100 &= \ln(0.4850) = -0.7236 \\
r &= 72.36.
\end{align*}
[[/math]]