excans:5df2b78412: Difference between revisions

From Stochiki
(Created page with "'''Solution: C''' <math display = "block"> \operatorname{E}(\frac{X}{1-X}) = 60 \int_0^1 \frac{x}{1-x} x^3 (1-x)^2 dx = 60 \int_0^1 x^4(1-x) dx = 60(x^5/5 - x^6/6) \Big |_0^1...")
 
mNo edit summary
 
Line 6: Line 6:


<math display = "block">
<math display = "block">
E[(\frac{X}{1-X})^2] = 60 \int_0^1 \frac{x^2}{(1-x)^2} x^3 (1-x)^2 dx = 60 \int_0^1 x^5 dx = 60(x^6/6 ) \Big |_0^1 = 60(1/6) = 10
\operatorname{E}[(\frac{X}{1-X})^2] = 60 \int_0^1 \frac{x^2}{(1-x)^2} x^3 (1-x)^2 dx = 60 \int_0^1 x^5 dx = 60(x^6/6 ) \Big |_0^1 = 60(1/6) = 10
</math>
 
<math display = "block">
\operatorname{Var}\left( \frac{X}{1-X}\right) = 10-2^2 = 6.
</math>
</math>


{{soacopyright | 2023}}
{{soacopyright | 2023}}

Latest revision as of 00:32, 8 May 2023

Solution: C

[[math]] \operatorname{E}(\frac{X}{1-X}) = 60 \int_0^1 \frac{x}{1-x} x^3 (1-x)^2 dx = 60 \int_0^1 x^4(1-x) dx = 60(x^5/5 - x^6/6) \Big |_0^1 = 60(1/5 -1/6) = 2 [[/math]]

[[math]] \operatorname{E}[(\frac{X}{1-X})^2] = 60 \int_0^1 \frac{x^2}{(1-x)^2} x^3 (1-x)^2 dx = 60 \int_0^1 x^5 dx = 60(x^6/6 ) \Big |_0^1 = 60(1/6) = 10 [[/math]]

[[math]] \operatorname{Var}\left( \frac{X}{1-X}\right) = 10-2^2 = 6. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.