excans:84e616f34c: Difference between revisions

From Stochiki
(Created page with "'''Solution: A''' Let N denote the number of warranty claims received. Then, <math display = "block"> 0.6 =\operatorname{P}( N =0) =e^{−c} ⇒ c =− \ln(0.6) =0.5108. </m...")
 
mNo edit summary
 
Line 12: Line 12:
\begin{align*}
\begin{align*}
&5000[ \operatorname{P}( N = 2) + 2 \operatorname{P}( N = 3) + 3\operatorname{P}( N = 4) + \cdots] \\
&5000[ \operatorname{P}( N = 2) + 2 \operatorname{P}( N = 3) + 3\operatorname{P}( N = 4) + \cdots] \\
&= 5000[ \operatorname{P}( N =+ 1) 2 \operatorname{P}( N =+ 2) 3\operatorname{P}( N =+ 3) + \cdots] − 5000[ \operatorname{P}( N =+ 1) \operatorname{P}( N =+ 2) \operatorname{P}( N =+ 3) + \cdots] \\
&= 5000[ \operatorname{P}( N = 1)+ 2 \operatorname{P}( N = 2)+ 3\operatorname{P}( N = 3) + \cdots] − 5000[ \operatorname{P}( N = 1) + \operatorname{P}( N =+ 2) \operatorname{P}( N = 3) + \cdots] \\
&=5000 \operatorname{E}( N ) − 5000[1 − \operatorname{P}( N =0)] =5000(0.5108) − 5000(1 − 0.6) =554.
&=5000 \operatorname{E}( N ) − 5000[1 − \operatorname{P}( N =0)] =5000(0.5108) − 5000(1 − 0.6) =554.
\end{align*}
\end{align*}

Latest revision as of 19:54, 2 January 2024

Solution: A

Let N denote the number of warranty claims received. Then,

[[math]] 0.6 =\operatorname{P}( N =0) =e^{−c} ⇒ c =− \ln(0.6) =0.5108. [[/math]]

The expected yearly insurance payments are:

[[math]] \begin{align*} &5000[ \operatorname{P}( N = 2) + 2 \operatorname{P}( N = 3) + 3\operatorname{P}( N = 4) + \cdots] \\ &= 5000[ \operatorname{P}( N = 1)+ 2 \operatorname{P}( N = 2)+ 3\operatorname{P}( N = 3) + \cdots] − 5000[ \operatorname{P}( N = 1) + \operatorname{P}( N =+ 2) \operatorname{P}( N = 3) + \cdots] \\ &=5000 \operatorname{E}( N ) − 5000[1 − \operatorname{P}( N =0)] =5000(0.5108) − 5000(1 − 0.6) =554. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.