exercise:261509e67f: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 11: Line 11:
Calculate <math>\operatorname{Var}(Z)</math>.
Calculate <math>\operatorname{Var}(Z)</math>.


<ul class="mw-excansopts"><li> 0.0300</li><li>0.0325 </li><li> 0.0350</li><li> 0.0375</li><li> 0.0400</li></ul>
<ul class="mw-excansopts"><li> 0.300</li><li>0.325 </li><li> 0.350</li><li> 0.375</li><li> 0.400</li></ul>


{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 12:47, 18 January 2024

For a special fully continuous whole life insurance on [math](x)[/math], you are given:

i) [math] \mu_{x+t}=0.03, t \geq 0[/math]

ii) [math]\delta=0.06[/math]

iii) The death benefit at time [math]t[/math] is [math]b_{t}=e^{0.05 t}, t \geq 0[/math]

iv) [math]Z[/math] is the present value random variable at issue for this insurance

Calculate [math]\operatorname{Var}(Z)[/math].

  • 0.300
  • 0.325
  • 0.350
  • 0.375
  • 0.400

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.