guide:3655fdf998: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\R}{\mathbb{R}} | |||
\newcommand{\A}{\mathcal{A}} | |||
\newcommand{\B}{\mathcal{B}} | |||
\newcommand{\N}{\mathbb{N}} | |||
\newcommand{\C}{\mathbb{C}} | |||
\newcommand{\Rbar}{\overline{\mathbb{R}}} | |||
\newcommand{\Bbar}{\overline{\mathcal{B}}} | |||
\newcommand{\Q}{\mathbb{Q}} | |||
\newcommand{\E}{\mathbb{E}} | |||
\newcommand{\p}{\mathbb{P}} | |||
\newcommand{\one}{\mathds{1}} | |||
\newcommand{\0}{\mathcal{O}} | |||
\newcommand{\mat}{\textnormal{Mat}} | |||
\newcommand{\sign}{\textnormal{sign}} | |||
\newcommand{\CP}{\mathcal{P}} | |||
\newcommand{\CT}{\mathcal{T}} | |||
\newcommand{\CY}{\mathcal{Y}} | |||
\newcommand{\F}{\mathcal{F}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
The notion of a <math>\sigma</math>-Algebra is related to one of the most general constructions, that of a ''topology''. To deal with Euclidean spaces and for the description of a natural notion of <math>\sigma</math>-Algebra, we need to take a closer look at the ''topological'' point of view. Therefore we want to describe some point set aspects of topology, basically also introduced in analysis. | |||
{{definitioncard|Topological space| | |||
Let <math>X</math> be a set. A topology on X is a family <math>\mathcal{O}</math> of subsets of <math>X</math> satisfying: | |||
<ul style{{=}}"list-style-type:lower-roman"><li>The ground set is in <math>\mathcal{O}</math>, i.e. <math>X\in\mathcal{O}</math>, | |||
</li> | |||
<li>The empty set is in <math>\mathcal{O}</math>, i.e. <math>\varnothing\in\mathcal{O}</math>, | |||
</li> | |||
<li>(finite intersection) For <math>O_1,...,O_n\in\mathcal{O}</math> with <math>n\geq1</math> we get that <math>\bigcap_{i=1}^{n}O_i\in\mathcal{O}</math>, | |||
</li> | |||
<li>(arbitrary union) For <math>O_i\in\mathcal{O}</math> with <math>i\in I</math>, where <math>I</math> is any index set <math>I</math>, we get that <math>\bigcup_{i\in I}O_i\in\mathcal{O}</math>. | |||
</li> | |||
</ul> | |||
The elements of <math>\mathcal{O}</math> are called open sets and the complements are called closed sets. Moreover, we call the tupel <math>(X,\mathcal{O})</math> a topological space. | |||
}} | |||
{{alert-info | [Hausdorff] | |||
Let <math>(X,\mathcal{O})</math> be a topological space. The topology <math>\mathcal{O}</math> on <math>X</math> is said to be Hausdorff if and only if for all <math>x,y\in X</math> with <math>x\not=y</math> there is a <math>O_x\in\mathcal{O}</math> with <math>x\in O_x</math> and there exists a <math>O_y\in\mathcal{O}</math> with <math>y\in O_y</math>, i.e. <math>O_x\cap O_y=\varnothing</math>. | |||
}} | |||
{{definitioncard|Metric space| | |||
Let <math>X</math> be a set. A metric is a map <math>d:X\times X\longrightarrow \mathbb{R}_{+}</math>, which, for all <math>x,y,z\in X</math>, satisfies the following. | |||
<ul style{{=}}"list-style-type:lower-roman"><li>(zero distance) <math>d(x,y)=0\Longleftrightarrow x=y,</math> | |||
</li> | |||
<li>(symmetry) <math>d(x,y)=d(y,x),</math> | |||
</li> | |||
<li>(triangle inequality) <math>d(x,y)\leq d(x,z)+d(z, y),</math> | |||
</li> | |||
</ul> | |||
We call a set <math>X</math> endowed with a metric, written <math>(X,d)</math>, a metric space. | |||
If we have a norm <math>\|\cdot\|</math> on <math>X</math>, and we then consider a normed space <math>(X,\|\cdot\|)</math>, we get the relation <math>d(x,y):=\|x-y\|</math>, which defines a distance. | |||
If <math>(X,d)</math> is a metric space, the topology on <math>X</math> is associated | |||
with <math>d</math> and is, for some arbitrary index set <math>I</math>, given by | |||
<math display="block"> | |||
\mathcal{O}_X^d:=\left\{\bigcup_{i\in I}B_{r_i}(x_i)\mid x_i\in X, r_i\in\mathbb{R}_{+}\right\},B_{r_i}(x_i):=\left\{y\in X\mid d(x_i,y) < r_i\right\} | |||
</math> | |||
}} | |||
{{definitioncard|Basis and separability| | |||
A topological space <math>(X,\mathcal{O})</math> is said to have a countable basis of open sets <math>\{w_n\}_{n\in\N}</math> if for every open set <math>O\in\mathcal{O}</math>, there exists a countable index set <math>I\subset\mathbb{N}</math>, such that | |||
<math display="block"> | |||
O=\bigcup_{n\in I}w_n. | |||
</math> | |||
Moreover, a metric space <math>(X,d)</math> is said to be separable, if it contains a sequence <math>(x_n)_{n\in\mathbb{N}}</math> which is dense in <math>X</math>, that is, for all <math>x\in X</math> there exists a subsequence <math>(x_{n_k})_{k\in\N}</math> of <math>(x_n)_{n\in N}</math>, such that <math>d(x,x_{n_k})\xrightarrow{k\to\infty}0</math>. | |||
}} | |||
{{proofcard|Proposition|prop-1|A metric space is separable if and only if it has a countable basis of open sets. | |||
|We first prove the direction <math>\Longrightarrow</math>. Therefore we can observe that <math>\mathscr{B}:=\{B_r(x_n)\}_{r_\in\Q_+,n\in\N}</math> is a basis of open sets, and thus we can write every open set as <math>O=\bigcup_{b\in\mathscr{B}\atop b\subset O}b</math>. Now let <math>x\in O</math>. Then there exists an <math>\varepsilon > 0</math>, such that <math>B_\varepsilon(x)\subset O</math> and there is a <math>n_0</math> with <math>d(x_{n_0},x) < \frac{\varepsilon}{4}</math> and thus <math>x\in B_{\frac{\varepsilon}{2}}(x_{n_0})\subset O</math>. Now we prove the direction <math>\Longleftarrow</math>. Let therefore <math>\{w_n\}_{n\in\N}</math> of open sets. Then we can choose a <math>x_n\in w_n</math> and check that the sequence <math>(x_n)_{n\in \N}</math> is a dense subset, which gives the claim.}} | |||
{{definitioncard|Product topology| | |||
Let <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> be two topological spaces. The product topology for the product space <math>X\times Y</math> is defined, with an arbitrary index set <math>I</math>, by the family of open sets | |||
<math display="block"> | |||
\mathcal{O}_{X\times Y}:=\left\{\bigcup_{i\in I}O^X_i\times \mathcal{O}^Y_i\mid O^X\in \mathcal{O}_X,O^Y\in\mathcal{O}_Y\right\}. | |||
</math> | |||
}} | |||
{{definitioncard|Continuity| | |||
Let <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> be two topological spaces. A map <math>f:(X,\mathcal{O}_X)\longrightarrow(Y,\mathcal{O}_Y)</math> is continuous if and only if for all <math>O^Y \in\mathcal{O}_Y</math>, the image of <math>O^Y</math> under <math>f^{-1}</math> is open, that is | |||
<math display="block"> | |||
f^{-1}(O^Y)=\{x\in X\mid f(x)\in O^Y\}\in\mathcal{O}_X | |||
</math> | |||
}} | |||
{{definitioncard|Canonical projection| | |||
Let <math>X</math> and <math>Y</math> be two sets. Then we can define the canonical projections to be the surjective maps | |||
<math display="block"> | |||
\begin{align*} | |||
\pi_X: X\times Y &\longrightarrow X\\ | |||
(x,y)&\longmapsto x | |||
\end{align*} | |||
</math> | |||
<math display="block"> | |||
\begin{align*} | |||
\pi_Y:X\times Y&\longrightarrow Y\\ | |||
(x,y)&\longmapsto y | |||
\end{align*} | |||
</math> | |||
}} | |||
{{alert-info | | |||
A useful observation is that the product topology is defined in such a way that the canonical projections are continuous, that is | |||
<math display="block"> | |||
\pi_X^{-1}(O^X)=O^X\times Y\in \mathcal{O}_{X\times Y},\pi_Y^{-1}(O^Y)=X\times O^Y\in\mathcal{O}_{X\times Y} | |||
</math> | |||
}} | |||
{{alert-info | | |||
We can also define a metric on two metric spaces <math>(X,d)</math> and <math>(Y,\delta)</math> given by | |||
<math display="block"> | |||
D_p((x,y),(x',y'))=(d^p(x,x')+\delta^p(y,y'))^{\frac{1}{p}}, | |||
</math> | |||
for <math>p\geq 1</math>. | |||
}} | |||
{{proofcard|Proposition|prop-2|Let <math>(X,\mathcal{O}_X)</math> and <math>(\mathcal{O}_Y)</math> be two topological spaces. | |||
If <math>(X,\mathcal{O}_X)</math> and <math>(Y,\mathcal{O}_Y)</math> have a countable basis of open sets, then <math>(X\times Y,\mathcal{O}_{X\times Y})</math> also has a countable basis of open sets. Moreover, Let <math>(X,d)</math> and <math>(Y,\delta)</math> be two metric spaces. If <math>(X,d)</math> and <math>(Y,\delta)</math> are separable, then <math>(X\times Y, D_p)</math> is also separable. | |||
|First, let <math>\mathcal{U}_X=\{U_n\}_{n\in\N}</math> be a basis of open sets on <math>X</math> and <math>\mathcal{V}_Y=\{V_n\}_{n\in\N}</math> a basis of open sets on <math>Y</math>. Then <math>\{U_n\times V_m\}_{(n,m)\in\N^2}</math> is a basis of open sets for <math>X\times Y</math>, which proves the first claim. We leave the second claim as an exercise for the reader.}} | |||
==General references== | |||
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}} |
Latest revision as of 00:53, 8 May 2024
The notion of a [math]\sigma[/math]-Algebra is related to one of the most general constructions, that of a topology. To deal with Euclidean spaces and for the description of a natural notion of [math]\sigma[/math]-Algebra, we need to take a closer look at the topological point of view. Therefore we want to describe some point set aspects of topology, basically also introduced in analysis.
Let [math]X[/math] be a set. A topology on X is a family [math]\mathcal{O}[/math] of subsets of [math]X[/math] satisfying:
- The ground set is in [math]\mathcal{O}[/math], i.e. [math]X\in\mathcal{O}[/math],
- The empty set is in [math]\mathcal{O}[/math], i.e. [math]\varnothing\in\mathcal{O}[/math],
- (finite intersection) For [math]O_1,...,O_n\in\mathcal{O}[/math] with [math]n\geq1[/math] we get that [math]\bigcap_{i=1}^{n}O_i\in\mathcal{O}[/math],
- (arbitrary union) For [math]O_i\in\mathcal{O}[/math] with [math]i\in I[/math], where [math]I[/math] is any index set [math]I[/math], we get that [math]\bigcup_{i\in I}O_i\in\mathcal{O}[/math].
The elements of [math]\mathcal{O}[/math] are called open sets and the complements are called closed sets. Moreover, we call the tupel [math](X,\mathcal{O})[/math] a topological space.
Let [math](X,\mathcal{O})[/math] be a topological space. The topology [math]\mathcal{O}[/math] on [math]X[/math] is said to be Hausdorff if and only if for all [math]x,y\in X[/math] with [math]x\not=y[/math] there is a [math]O_x\in\mathcal{O}[/math] with [math]x\in O_x[/math] and there exists a [math]O_y\in\mathcal{O}[/math] with [math]y\in O_y[/math], i.e. [math]O_x\cap O_y=\varnothing[/math].
Let [math]X[/math] be a set. A metric is a map [math]d:X\times X\longrightarrow \mathbb{R}_{+}[/math], which, for all [math]x,y,z\in X[/math], satisfies the following.
- (zero distance) [math]d(x,y)=0\Longleftrightarrow x=y,[/math]
- (symmetry) [math]d(x,y)=d(y,x),[/math]
- (triangle inequality) [math]d(x,y)\leq d(x,z)+d(z, y),[/math]
We call a set [math]X[/math] endowed with a metric, written [math](X,d)[/math], a metric space. If we have a norm [math]\|\cdot\|[/math] on [math]X[/math], and we then consider a normed space [math](X,\|\cdot\|)[/math], we get the relation [math]d(x,y):=\|x-y\|[/math], which defines a distance. If [math](X,d)[/math] is a metric space, the topology on [math]X[/math] is associated with [math]d[/math] and is, for some arbitrary index set [math]I[/math], given by
A topological space [math](X,\mathcal{O})[/math] is said to have a countable basis of open sets [math]\{w_n\}_{n\in\N}[/math] if for every open set [math]O\in\mathcal{O}[/math], there exists a countable index set [math]I\subset\mathbb{N}[/math], such that
Moreover, a metric space [math](X,d)[/math] is said to be separable, if it contains a sequence [math](x_n)_{n\in\mathbb{N}}[/math] which is dense in [math]X[/math], that is, for all [math]x\in X[/math] there exists a subsequence [math](x_{n_k})_{k\in\N}[/math] of [math](x_n)_{n\in N}[/math], such that [math]d(x,x_{n_k})\xrightarrow{k\to\infty}0[/math].
A metric space is separable if and only if it has a countable basis of open sets.
We first prove the direction [math]\Longrightarrow[/math]. Therefore we can observe that [math]\mathscr{B}:=\{B_r(x_n)\}_{r_\in\Q_+,n\in\N}[/math] is a basis of open sets, and thus we can write every open set as [math]O=\bigcup_{b\in\mathscr{B}\atop b\subset O}b[/math]. Now let [math]x\in O[/math]. Then there exists an [math]\varepsilon \gt 0[/math], such that [math]B_\varepsilon(x)\subset O[/math] and there is a [math]n_0[/math] with [math]d(x_{n_0},x) \lt \frac{\varepsilon}{4}[/math] and thus [math]x\in B_{\frac{\varepsilon}{2}}(x_{n_0})\subset O[/math]. Now we prove the direction [math]\Longleftarrow[/math]. Let therefore [math]\{w_n\}_{n\in\N}[/math] of open sets. Then we can choose a [math]x_n\in w_n[/math] and check that the sequence [math](x_n)_{n\in \N}[/math] is a dense subset, which gives the claim.
Let [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] be two topological spaces. The product topology for the product space [math]X\times Y[/math] is defined, with an arbitrary index set [math]I[/math], by the family of open sets
Let [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] be two topological spaces. A map [math]f:(X,\mathcal{O}_X)\longrightarrow(Y,\mathcal{O}_Y)[/math] is continuous if and only if for all [math]O^Y \in\mathcal{O}_Y[/math], the image of [math]O^Y[/math] under [math]f^{-1}[/math] is open, that is
Let [math]X[/math] and [math]Y[/math] be two sets. Then we can define the canonical projections to be the surjective maps
A useful observation is that the product topology is defined in such a way that the canonical projections are continuous, that is
We can also define a metric on two metric spaces [math](X,d)[/math] and [math](Y,\delta)[/math] given by
for [math]p\geq 1[/math].
Let [math](X,\mathcal{O}_X)[/math] and [math](\mathcal{O}_Y)[/math] be two topological spaces. If [math](X,\mathcal{O}_X)[/math] and [math](Y,\mathcal{O}_Y)[/math] have a countable basis of open sets, then [math](X\times Y,\mathcal{O}_{X\times Y})[/math] also has a countable basis of open sets. Moreover, Let [math](X,d)[/math] and [math](Y,\delta)[/math] be two metric spaces. If [math](X,d)[/math] and [math](Y,\delta)[/math] are separable, then [math](X\times Y, D_p)[/math] is also separable.
First, let [math]\mathcal{U}_X=\{U_n\}_{n\in\N}[/math] be a basis of open sets on [math]X[/math] and [math]\mathcal{V}_Y=\{V_n\}_{n\in\N}[/math] a basis of open sets on [math]Y[/math]. Then [math]\{U_n\times V_m\}_{(n,m)\in\N^2}[/math] is a basis of open sets for [math]X\times Y[/math], which proves the first claim. We leave the second claim as an exercise for the reader.
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].