|
|
Line 1: |
Line 1: |
| <div class="d-none">
| | A random variable <math>X</math> has <math>\chi^2_n</math> (chi-squared with <math>n</math> degrees of freedom) if it has the same distribution as <math>Z_1^2+ \ldots +Z_n^2</math>, where <math>Z_1, \ldots, Z_n</math> are i.i.d <math>\cN(0,1)</math>. |
| <math>
| |
| \newcommand{\DS}{\displaystyle}
| |
| \newcommand{\intbeta}{\lfloor \beta \rfloor}
| |
| \newcommand{\cA}{\mathcal{A}}
| |
| \newcommand{\cB}{\mathcal{B}}
| |
| \newcommand{\cC}{\mathcal{C}}
| |
| \newcommand{\cD}{\mathcal{D}}
| |
| \newcommand{\cE}{\mathcal{E}}
| |
| \newcommand{\cF}{\mathcal{F}}
| |
| \newcommand{\cG}{\mathcal{G}}
| |
| \newcommand{\cH}{\mathcal{H}}
| |
| \newcommand{\cI}{\mathcal{I}}
| |
| \newcommand{\cJ}{\mathcal{J}}
| |
| \newcommand{\cK}{\mathcal{K}}
| |
| \newcommand{\cL}{\mathcal{L}}
| |
| \newcommand{\cM}{\mathcal{M}}
| |
| \newcommand{\cN}{\mathcal{N}}
| |
| \newcommand{\cO}{\mathcal{O}}
| |
| \newcommand{\cP}{\mathcal{P}}
| |
| \newcommand{\cQ}{\mathcal{Q}}
| |
| \newcommand{\cS}{\mathcal{S}}
| |
| \newcommand{\cT}{\mathcal{T}}
| |
| \newcommand{\cU}{\mathcal{U}}
| |
| \newcommand{\cV}{\mathcal{V}}
| |
| \newcommand{\cX}{\mathcal{X}}
| |
| \newcommand{\cY}{\mathcal{Y}}
| |
| \newcommand{\cZ}{\mathcal{Z}}
| |
| | |
| \newcommand{\sg}{\mathsf{subG}}
| |
| \newcommand{\subE}{\mathsf{subE}}
| |
| | |
| \newcommand{\bA}{\mathbf{A}}
| |
| \newcommand{\bB}{\mathbf{B}}
| |
| \newcommand{\bC}{\mathbf{C}}
| |
| \newcommand{\bD}{\mathbf{D}}
| |
| \newcommand{\bE}{\mathbf{E}}
| |
| \newcommand{\bF}{\mathbf{F}}
| |
| \newcommand{\bG}{\mathbf{G}}
| |
| \newcommand{\bH}{\mathbf{H}}
| |
| \newcommand{\bI}{\mathbf{I}}
| |
| \newcommand{\bJ}{\mathbf{J}}
| |
| \newcommand{\bK}{\mathbf{K}}
| |
| \newcommand{\bM}{\mathbf{M}}
| |
| \newcommand{\bN}{\mathbf{N}}
| |
| \newcommand{\bO}{\mathbf{O}}
| |
| \newcommand{\bP}{\mathbf{P}}
| |
| \newcommand{\bp}{\mathbf{p}}
| |
| \newcommand{\bQ}{\mathbf{Q}}
| |
| \newcommand{\bS}{\mathbf{S}}
| |
| \newcommand{\bT}{\mathbf{T}}
| |
| \newcommand{\bU}{\mathbf{U}}
| |
| \newcommand{\bV}{\mathbf{V}}
| |
| \newcommand{\bX}{\mathbf{X}}
| |
| \newcommand{\bY}{\mathbf{Y}}
| |
| \newcommand{\bZ}{\mathbf{Z}}
| |
| \newcommand{\bflambda}{\boldsymbol{\lambda}}
| |
| \newcommand{\bftheta}{\boldsymbol{\theta}}
| |
| \newcommand{\bfg}{\boldsymbol{g}}
| |
| \newcommand{\bfy}{\boldsymbol{y}}
| |
| \def\thetaphat{\hat{\bftheta}_\bp}
| |
| \def\bflam{\boldsymbol{\lambda}}
| |
| \def\Lam{\Lambda}
| |
| \def\lam{\lambda}
| |
| \def\bfpi{\boldsymbol{\pi}}
| |
| \def\bfz{\boldsymbol{z}}
| |
| \def\bfw{\boldsymbol{w}}
| |
| \def\bfeta{\boldsymbol{\eta}}
| |
| | |
| \newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}}
| |
| \newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}}
| |
| \newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}}
| |
| \newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}}
| |
| | |
| \newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}}
| |
| %\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}}
| |
| \newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}}
| |
| \newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}}
| |
| | |
| \newcommand{\field}[1]{\mathbb{#1}}
| |
| \newcommand{\q}{\field{Q}}
| |
| \newcommand{\Z}{\field{Z}}
| |
| \newcommand{\X}{\field{X}}
| |
| \newcommand{\Y}{\field{Y}}
| |
| \newcommand{\bbS}{\field{S}}
| |
| \newcommand{\n}{\mathcal{N}}
| |
| \newcommand{\x}{\mathcal{X}}
| |
| | |
| \newcommand{\pp}{{\sf p}}
| |
| \newcommand{\hh}{{\sf h}}
| |
| \newcommand{\ff}{{\sf f}}
| |
| | |
| | |
| \newcommand{\Bern}{\mathsf{Ber}}
| |
| \newcommand{\Bin}{\mathsf{Bin}}
| |
| \newcommand{\Lap}{\mathsf{Lap}}
| |
| | |
| \newcommand{\tr}{\mathsf{Tr}}
| |
| | |
| \newcommand{\phin}{\varphi_n}
| |
| \newcommand{\phinb}{\overline \varphi_n(t)}
| |
| \newcommand{\pn}{\p_{\kern-0.25em n}}
| |
| \newcommand{\pnm}{\p_{\kern-0.25em n,m}}
| |
| \newcommand{\psubm}{\p_{\kern-0.25em m}}
| |
| \newcommand{\psubp}{\p_{\kern-0.25em p}}
| |
| \newcommand{\cfi}{\cF_{\kern-0.25em \infty}}
| |
| \newcommand{\e}{\mathrm{e}}
| |
| \newcommand{\ic}{\mathrm{i}}
| |
| \newcommand{\Leb}{\mathrm{Leb}_d}
| |
| \newcommand{\Var}{\mathrm{Var}}
| |
| \newcommand{\ddelta}{d_{\symdiffsmall}}
| |
| \newcommand{\dsubh}{d_H}
| |
| \newcommand{\indep}{\perp\kern-0.95em{\perp}}
| |
| | |
| \newcommand{\supp}{\mathop{\mathrm{supp}}}
| |
| \newcommand{\rank}{\mathop{\mathrm{rank}}}
| |
| \newcommand{\vol}{\mathop{\mathrm{vol}}}
| |
| \newcommand{\conv}{\mathop{\mathrm{conv}}}
| |
| \newcommand{\card}{\mathop{\mathrm{card}}}
| |
| \newcommand{\argmin}{\mathop{\mathrm{argmin}}}
| |
| \newcommand{\argmax}{\mathop{\mathrm{argmax}}}
| |
| \newcommand{\ud}{\mathrm{d}}
| |
| \newcommand{\var}{\mathrm{var}}
| |
| \newcommand{\re}{\mathrm{Re}}
| |
| \newcommand{\MSE}{\mathsf{MSE}}
| |
| \newcommand{\im}{\mathrm{Im}}
| |
| \newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt
| |
| height 6pt depth 1.5pt}\vspace{0.5cm}\par}
| |
| | |
| \newcommand{\bi}[1]{^{(#1)}}
| |
| \newcommand{\eps}{\varepsilon}
| |
| \newcommand{\Deq}{\stackrel{\mathcal{D}}{=}}
| |
| | |
| | |
| \newcommand{\ubar}{\underbar}
| |
| \newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}}
| |
| \newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}}
| |
| | |
| \newcommand{\hint}[1]{\texttt{[Hint:#1]}}
| |
| | |
| \newcommand{\vp}{\vspace{.25cm}}
| |
| \newcommand{\vm}{\vspace{.5cm}}
| |
| \newcommand{\vg}{\vspace{1cm}}
| |
| \newcommand{\vgneg}{\vspace{-1cm}}
| |
| \newcommand{\vneg}{\vspace{-.5cm}}
| |
| \newcommand{\vpneg}{\vspace{-.25cm}}
| |
| | |
| \newcommand{\tp}{\ptsize{10}}
| |
| \newcommand{\douzp}{\ptsize{12}}
| |
| \newcommand{\np}{\ptsize{9}}
| |
| \newcommand{\hp}{\ptsize{8}}
| |
| | |
| | |
| | |
| \newcommand{\red}{\color{red}}
| |
| \newcommand{\ndpr}[1]{{\textsf{\red[#1]}}}
| |
| | |
| | |
| \newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} }
| |
| \newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em}
| |
| \newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber}
| |
| \newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2}
| |
| | |
| \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}}
| |
| \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}}
| |
| | |
| \newcommand{\MIT}[1]{{\color{MITred} #1}}
| |
| | |
| \newcommand{\dHyp}{\{-1,1\}^d}
| |
| \newcommand{\thetahard}{\hat \theta^{hrd}}
| |
| \newcommand{\thetasoft}{\hat \theta^{sft}}
| |
| \newcommand{\thetabic}{\hat \theta^{bic}}
| |
| \newcommand{\thetalasso}{\hat \theta^{\cL}}
| |
| \newcommand{\thetaslope}{\hat \theta^{\cS}}
| |
| \newcommand{\thetahard}{\hat \theta^{hrd}}
| |
| \newcommand{\thetasoft}{\hat \theta^{sft}}
| |
| \newcommand{\thetabic}{\hat \theta^{bic}}
| |
| \newcommand{\thetalasso}{\hat \theta^{\cL}}
| |
| \newcommand{\thetaslope}{\hat \theta^{\cS}}
| |
| | |
| \newcommand{\thetals}{\hat \theta^{ls}}
| |
| \newcommand{\thetalsm}{\tilde \theta^{ls_X}}
| |
| \newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau}
| |
| \newcommand{\thetalsK}{\hat \theta^{ls}_K}
| |
| \newcommand{\muls}{\hat \mu^{ls}}
| |
| </math>
| |
| </div>
| |
| | |
| A random variable <math>X</math> has <math>\chi^2_n</math> (chi-squared with <math>n</math> degrees of freedom) if it has the same distribution as <math>Z_1^2+ \ldots +Z_n^2</math>, where <math>Z_1, \ldots, Z_n</math> are \iid <math>\cN(0,1)</math>. | |
| <ul><li> Let <math>Z \sim \cN(0,1)</math>. Show that the moment generating function of <math>Y=Z^2-1</math> satisfies | | <ul><li> Let <math>Z \sim \cN(0,1)</math>. Show that the moment generating function of <math>Y=Z^2-1</math> satisfies |
|
| |
|