guide:B846f441d7: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} | |||
\newcommand{\red}[1]{\textcolor{red}{#1}} | |||
\newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} | |||
\newcommand\xoverline[2][0.75]{% | |||
\sbox{\myboxA}{$\m@th#2$}% | |||
\setbox\myboxB\null% Phantom box | |||
\ht\myboxB=\ht\myboxA% | |||
\dp\myboxB=\dp\myboxA% | |||
\wd\myboxB=#1\wd\myboxA% Scale phantom | |||
\sbox\myboxB{$\m@th\overline{\copy\myboxB}$}% Overlined phantom | |||
\setlength\mylenA{\the\wd\myboxA}% calc width diff | |||
\addtolength\mylenA{-\the\wd\myboxB}% | |||
\ifdim\wd\myboxB<\wd\myboxA% | |||
\rlap{\hskip 0.35\mylenA\usebox\myboxB}{\usebox\myboxA}% | |||
\else | |||
\hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}% | |||
\fi} | |||
\newcommand{\smallfrac}[2]{\scalebox{1.35}{\ensuremath{\frac{#1}{#2}}}} | |||
\newcommand{\medfrac}[2]{\scalebox{1.2}{\ensuremath{\frac{#1}{#2}}}} | |||
\newcommand{\textfrac}[2]{{\textstyle\ensuremath{\frac{#1}{#2}}}} | |||
\newcommand{\nsum}[1][1.4]{% only for \displaystyle | |||
\mathop{% | |||
\raisebox | |||
{-#1\depthofsumsign+1\depthofsumsign} | |||
\newcommand{\tr}{\operatorname{tr}} | |||
\newcommand{\e}{\operatorname{e}} | |||
\newcommand{\B}{\operatorname{B}} | |||
\newcommand{\Bbar}{\xoverline[0.75]{\operatorname{B}}} | |||
\newcommand{\pr}{\operatorname{pr}} | |||
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | |||
\newcommand{\E}{\operatorname{E}} | |||
\newcommand{\V}{\operatorname{V}} | |||
\newcommand{\Cov}{\operatorname{Cov}} | |||
\newcommand{\Bigsum}[2]{\ensuremath{\mathop{\textstyle\sum}_{#1}^{#2}}} | |||
\newcommand{\ran}{\operatorname{ran}} | |||
\newcommand{\card}{\#} | |||
\newcommand{\Conv}{\mathop{\scalebox{1.1}{\raisebox{-0.08ex}{$\ast$}}}}% | |||
\usepackage{pgfplots} | |||
\newcommand{\filledsquare}{\begin{picture}(0,0)(0,0)\put(-4,1.4){$\scriptscriptstyle\text{\ding{110}}$}\end{picture}\hspace{2pt}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
label{Ch-TB} | |||
We start this chapter by explaining a general technique to obtain bounds for <math>\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr]</math> where the <math>Y_i</math> are independent random variables. A bound that arises from this ‘recipe’ is often referred to as a Chernoff bound. The basic idea is given in the following [[#CHERNOFF-RECEIPE |Lemma]] which establishes the ‘generic’ Chernoff bound. | |||
{{proofcard|Lemma|CHERNOFF-RECEIPE|Let <math>(\Omega,\Sigma,\P)</math> be a probability space and let <math>Y_1,\dots,Y_n\colon\Omega\rightarrow\mathbb{R}</math> be mutually independent random variables. Then | |||
<math display="block"> | |||
\P\bigl[Y_1+\cdots+Y_n\geqslant a\bigr]\leqslant \inf_{t > 0}\exp(-ta)\prod_{i=1}^n\E(\exp(tY_i)) | |||
</math> | |||
holds for every <math>a > 0</math>. | |||
|For fixed <math>t > 0</math> the function <math>\exp(t\cdot\shortminus)</math> is increasing. We put <math>Y=Y_1+\cdots+Y_n</math> and get | |||
<math display="block"> | |||
\P[Y\geqslant a] = \P[\exp(tY)\geqslant \exp(ta)]\leqslant\frac{\E(\exp(tY))}{\exp(ta)} | |||
</math> | |||
by applying the Markov bound. Now we take the infimum over <math>t > 0</math> and employ the independence to get | |||
<math display="block"> | |||
\P[Y\geqslant a]\leqslant \inf_{t > 0}\exp(-ta)\E(\exp(t\Bigsum{i=1}{n} tY_i))=\inf_{t > 0}\exp(-ta)\prod_{i=1}^n\E(\exp(tY_i)) | |||
</math> | |||
as desired.}} | |||
The classical Chernoff bound recipe is now to compute or estimate the right hand side by exploiting additional information on the <math>Y_i</math> that is given in concrete situations. Readers unfamiliar with Chernoff bounds can find a classical example on how the recipe works in [[#PROBL-SIMPLE-CHERNOFF |Problem]] where the <math>Y_i</math> are independent Bernoulli random variables. In [[#MTB-THM |Theorem]] below the additional knowledge comes from the assumption that the moments of each <math>Y_i</math> grow at most like factorial. | |||
{{proofcard|Theorem|MTB-THM|Let <math>(\Omega,\Sigma,\P)</math> be a probability space and let <math>Y_1,\dots,Y_d\colon\Omega\rightarrow\mathbb{R}</math> be mutually independent random variables with expectation zero and <math>|\E(Y_i^k)|\leqslant k!/2</math> for <math>i=1,\dots,d</math> and <math>k\geqslant2</math>. Then we have | |||
<math display="block"> | |||
\P\bigl[|Y_1+\cdots+Y_d|\geqslant a\bigr]\leqslant 2\exp\bigl(-C\min\bigl(\medfrac{a^2}{d},a\bigr)\bigr) | |||
</math> | |||
for every <math>a > 0</math> and with <math>C=1/4</math>. | |||
|Let <math>Y</math> be one of the random variables <math>\pm Y_1,\dots,\pm Y_d</math> and <math>0 < t\leqslant 1/2</math>. Then we estimate | |||
<math display="block"> | |||
\begin{align*} | |||
\E(\exp(tY)) & = \bigl|\E\bigl(1+tY +\Bigsum{k=2}{\infty}\medfrac{(tY)^k}{k!}\bigr)\bigr| \leqslant 1 + \Bigsum{k=2}{\infty}\medfrac{t^k|\E(Y^k)|}{k!}\\ | |||
& \leqslant 1 + \Bigsum{k=2}{\infty}\medfrac{t^k}{2} = 1 + \smallfrac{1}{2}\bigl(\medfrac{1}{1-t} - (t+1)\bigr)\\ | |||
& = 1 + \medfrac{1}{2}\medfrac{t^2}{1-t}\leqslant 1+t^2\leqslant \exp(t^2) | |||
\end{align*} | |||
</math> | |||
where the last equality can easily be checked by means of calculus. Now we use [[#CHERNOFF-RECEIPE |Lemma]] and get | |||
<math display="block"> | |||
\begin{align*} | |||
\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr] & \leqslant \inf_{t > 0}\exp(-ta)\prod_{i=1}^d\E(\exp(tY_i))\\ | |||
& \leqslant \inf_{0 < t\leqslant1/2}\exp(-ta)\prod_{i=1}^d\exp(t^2)\\ | |||
& \leqslant \inf_{0 < t\leqslant1/2}\exp(-ta+dt^2). | |||
\end{align*} | |||
</math> | |||
By solving <math>\frac{\dd}{\dd t}(-ta+dt^2)=-a+2dt=0</math> for <math>t</math> and considering the constraint <math>t\leqslant1/2</math> this leads to <math>t=\min(\frac{a}{2d},\frac{1}{2})</math>, and further to | |||
<math display="block"> | |||
-ta+dt^2 \leqslant -\medfrac{1}{2}ta -\medfrac{1}{2}ta + dt\medfrac{a}{2d}=-\medfrac{1}{2}ta \leqslant -\medfrac{1}{2}\min\bigl(\medfrac{a}{2d},\medfrac{1}{2}\bigr)a = -\min\bigl(\medfrac{a^2}{4d},\medfrac{a}{4}\bigr). | |||
</math> | |||
This implies | |||
<math display="block"> | |||
\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr] \leqslant \exp\Bigl(-\min\bigl(\medfrac{a^2}{4d},\medfrac{a}{4}\bigr)\Bigr) | |||
</math> | |||
and similiarly we get | |||
<math display="block"> | |||
\P\bigl[Y_1+\cdots+Y_d\leqslant -a\bigr] = \P\bigl[-Y_1-\cdots-Y_d\geqslant a\bigr] \leqslant \exp\Bigl(-\min\bigl(\medfrac{a^2}{4d},\medfrac{a}{4}\bigr)\Bigr). | |||
</math> | |||
Consequently, | |||
<math display="block"> | |||
\P\bigl[\bigl|Y_1+\cdots+Y_d\bigr|\geqslant a\bigr] \leqslant 2\exp\Bigl(-\min\bigl(\medfrac{a^2}{4d},\medfrac{a}{4}\bigr)\Bigr) | |||
</math> | |||
as desired.}} | |||
\section*{Problems} | |||
==General references== | |||
{{cite arXiv|last1=Wegner|first1=Sven-Ake|year=2024|title=Lecture Notes on High-Dimensional Data|eprint=2101.05841|class=math.FA}} |
Revision as of 22:12, 31 May 2024
label{Ch-TB} We start this chapter by explaining a general technique to obtain bounds for [math]\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr][/math] where the [math]Y_i[/math] are independent random variables. A bound that arises from this ‘recipe’ is often referred to as a Chernoff bound. The basic idea is given in the following Lemma which establishes the ‘generic’ Chernoff bound.
Let [math](\Omega,\Sigma,\P)[/math] be a probability space and let [math]Y_1,\dots,Y_n\colon\Omega\rightarrow\mathbb{R}[/math] be mutually independent random variables. Then
For fixed [math]t \gt 0[/math] the function [math]\exp(t\cdot\shortminus)[/math] is increasing. We put [math]Y=Y_1+\cdots+Y_n[/math] and get
The classical Chernoff bound recipe is now to compute or estimate the right hand side by exploiting additional information on the [math]Y_i[/math] that is given in concrete situations. Readers unfamiliar with Chernoff bounds can find a classical example on how the recipe works in Problem where the [math]Y_i[/math] are independent Bernoulli random variables. In Theorem below the additional knowledge comes from the assumption that the moments of each [math]Y_i[/math] grow at most like factorial.
Let [math](\Omega,\Sigma,\P)[/math] be a probability space and let [math]Y_1,\dots,Y_d\colon\Omega\rightarrow\mathbb{R}[/math] be mutually independent random variables with expectation zero and [math]|\E(Y_i^k)|\leqslant k!/2[/math] for [math]i=1,\dots,d[/math] and [math]k\geqslant2[/math]. Then we have
Let [math]Y[/math] be one of the random variables [math]\pm Y_1,\dots,\pm Y_d[/math] and [math]0 \lt t\leqslant 1/2[/math]. Then we estimate
This implies
\section*{Problems}
General references
Wegner, Sven-Ake (2024). "Lecture Notes on High-Dimensional Data". arXiv:2101.05841 [math.FA].