guide:B846f441d7: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | <div class="d-none"><math> | ||
\newcommand{\smallfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\medfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\textfrac}[2]{\frac{#1}{#2}} | |||
\newcommand{\smallfrac}[2] | |||
\newcommand{\medfrac}[2] | |||
\newcommand{\textfrac}[2] | |||
\newcommand{\tr}{\operatorname{tr}} | \newcommand{\tr}{\operatorname{tr}} | ||
\newcommand{\e}{\operatorname{e}} | \newcommand{\e}{\operatorname{e}} | ||
\newcommand{\B}{\operatorname{B}} | \newcommand{\B}{\operatorname{B}} | ||
\newcommand{\Bbar}{\ | \newcommand{\Bbar}{\overline{\operatorname{B}}} | ||
\newcommand{\pr}{\operatorname{pr}} | \newcommand{\pr}{\operatorname{pr}} | ||
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} | ||
Line 33: | Line 12: | ||
\newcommand{\V}{\operatorname{V}} | \newcommand{\V}{\operatorname{V}} | ||
\newcommand{\Cov}{\operatorname{Cov}} | \newcommand{\Cov}{\operatorname{Cov}} | ||
\newcommand{\Bigsum}[2] | \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} | ||
\newcommand{\ran}{\operatorname{ran}} | \newcommand{\ran}{\operatorname{ran}} | ||
\newcommand{\card}{\#} | \newcommand{\card}{\#} | ||
\newcommand{\ | \newcommand{\mathds}{\mathbb}</math></div> | ||
We start this chapter by explaining a general technique to obtain bounds for <math>\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr]</math> where the <math>Y_i</math> are independent random variables. A bound that arises from this ‘recipe’ is often referred to as a Chernoff bound. The basic idea is given in the following [[#CHERNOFF-RECEIPE |Lemma]] which establishes the ‘generic’ Chernoff bound. | We start this chapter by explaining a general technique to obtain bounds for <math>\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr]</math> where the <math>Y_i</math> are independent random variables. A bound that arises from this ‘recipe’ is often referred to as a Chernoff bound. The basic idea is given in the following [[#CHERNOFF-RECEIPE |Lemma]] which establishes the ‘generic’ Chernoff bound. | ||
{{proofcard|Lemma|CHERNOFF-RECEIPE|Let <math>(\Omega,\Sigma,\P)</math> be a probability space and let <math>Y_1,\dots,Y_n\colon\Omega\rightarrow\mathbb{R}</math> be mutually independent random variables. Then | {{proofcard|Lemma|CHERNOFF-RECEIPE|Let <math>(\Omega,\Sigma,\P)</math> be a probability space and let <math>Y_1,\dots,Y_n\colon\Omega\rightarrow\mathbb{R}</math> be mutually independent random variables. Then | ||
Line 108: | Line 83: | ||
</math> | </math> | ||
as desired.}} | as desired.}} | ||
==General references== | ==General references== | ||
{{cite arXiv|last1=Wegner|first1=Sven-Ake|year=2024|title=Lecture Notes on High-Dimensional Data|eprint=2101.05841|class=math.FA}} | {{cite arXiv|last1=Wegner|first1=Sven-Ake|year=2024|title=Lecture Notes on High-Dimensional Data|eprint=2101.05841|class=math.FA}} |
Revision as of 00:14, 1 June 2024
We start this chapter by explaining a general technique to obtain bounds for [math]\P\bigl[Y_1+\cdots+Y_d\geqslant a\bigr][/math] where the [math]Y_i[/math] are independent random variables. A bound that arises from this ‘recipe’ is often referred to as a Chernoff bound. The basic idea is given in the following Lemma which establishes the ‘generic’ Chernoff bound.
Let [math](\Omega,\Sigma,\P)[/math] be a probability space and let [math]Y_1,\dots,Y_n\colon\Omega\rightarrow\mathbb{R}[/math] be mutually independent random variables. Then
For fixed [math]t \gt 0[/math] the function [math]\exp(t\cdot\shortminus)[/math] is increasing. We put [math]Y=Y_1+\cdots+Y_n[/math] and get
The classical Chernoff bound recipe is now to compute or estimate the right hand side by exploiting additional information on the [math]Y_i[/math] that is given in concrete situations. Readers unfamiliar with Chernoff bounds can find a classical example on how the recipe works in Problem where the [math]Y_i[/math] are independent Bernoulli random variables. In Theorem below the additional knowledge comes from the assumption that the moments of each [math]Y_i[/math] grow at most like factorial.
Let [math](\Omega,\Sigma,\P)[/math] be a probability space and let [math]Y_1,\dots,Y_d\colon\Omega\rightarrow\mathbb{R}[/math] be mutually independent random variables with expectation zero and [math]|\E(Y_i^k)|\leqslant k!/2[/math] for [math]i=1,\dots,d[/math] and [math]k\geqslant2[/math]. Then we have
Let [math]Y[/math] be one of the random variables [math]\pm Y_1,\dots,\pm Y_d[/math] and [math]0 \lt t\leqslant 1/2[/math]. Then we estimate
This implies
General references
Wegner, Sven-Ake (2024). "Lecture Notes on High-Dimensional Data". arXiv:2101.05841 [math.FA].