exercise:093e852bc9: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
<div class="d-none"><math>
\newcommand{\indexmark}[1]{#1\markboth{#1}{#1}}
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand\xoverline[2][0.75]{%
    \sbox{\myboxA}{$\m@th#2$}%
    \setbox\myboxB\null% Phantom box
    \ht\myboxB=\ht\myboxA%
    \dp\myboxB=\dp\myboxA%
    \wd\myboxB=#1\wd\myboxA% Scale phantom
    \sbox\myboxB{$\m@th\overline{\copy\myboxB}$}%  Overlined phantom
    \setlength\mylenA{\the\wd\myboxA}%  calc width diff
    \addtolength\mylenA{-\the\wd\myboxB}%
    \ifdim\wd\myboxB<\wd\myboxA%
      \rlap{\hskip 0.35\mylenA\usebox\myboxB}{\usebox\myboxA}%
    \else
        \hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}%
    \fi}
\newcommand{\smallfrac}[2]{\scalebox{1.35}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\medfrac}[2]{\scalebox{1.2}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\textfrac}[2]{{\textstyle\ensuremath{\frac{#1}{#2}}}}
\newcommand{\nsum}[1][1.4]{% only for \displaystyle
    \mathop{%
        \raisebox
            {-#1\depthofsumsign+1\depthofsumsign}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\xoverline[0.75]{\operatorname{B}}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
Line 33: Line 12:
\newcommand{\V}{\operatorname{V}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\ensuremath{\mathop{\textstyle\sum}_{#1}^{#2}}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\card}{\#}
\newcommand{\Conv}{\mathop{\scalebox{1.1}{\raisebox{-0.08ex}{$\ast$}}}}%
\newcommand{\mathds}{\mathbb}</math></div>


\usepackage{pgfplots}
Let <math>X</math>, <math>Y\sim\mathcal{N}(0,1,\mathbb{R}^d)</math>. Show the following.
\newcommand{\filledsquare}{\begin{picture}(0,0)(0,0)\put(-4,1.4){$\scriptscriptstyle\text{\ding{110}}$}\end{picture}\hspace{2pt}}
\newcommand{\mathds}{\mathbb}</math></div>
\label{PROB-2}Let <math>X</math>, <math>Y\sim\mathcal{N}(0,1,\mathbb{R}^d)</math>. Show the following.
<ul style="list-style-type:lower-roman"><li> <math>\forall\:d\geqslant1\colon\E(\|X-Y\|-\sqrt{2d})\leqslant1/\sqrt{2d}</math>.  
<ul style="list-style-type:lower-roman"><li> <math>\forall\:d\geqslant1\colon\E(\|X-Y\|-\sqrt{2d})\leqslant1/\sqrt{2d}</math>.  
</li>
</li>
Line 47: Line 23:
</li>
</li>
</ul>
</ul>
\smallskip
 
{
\small
''Hint:'' Check firstly <math>\V((X_i-Y_i)^2)=3</math> by establishing that <math>X_i-Y_i\sim\mathcal{N}(0,2,\mathbb{R})</math> and by using a suitable formula for computing the fourth moment. Conclude then that <math>\V(\|X-Y\|^2)\leqslant3d</math>. Adapt finally the arguments we gave above for <math>\E(\|X\|-\sqrt{d})</math> and <math>\V(\|X\|)</math>.
''Hint:'' Check firstly <math>\V((X_i-Y_i)^2)=3</math> by establishing that <math>X_i-Y_i\sim\mathcal{N}(0,2,\mathbb{R})</math> and by using a suitable formula for computing the fourth moment. Conclude then that <math>\V(\|X-Y\|^2)\leqslant3d</math>. Adapt finally the arguments we gave above for <math>\E(\|X\|-\sqrt{d})</math> and <math>\V(\|X\|)</math>.
}

Latest revision as of 02:41, 1 June 2024

[math] \newcommand{\smallfrac}[2]{\frac{#1}{#2}} \newcommand{\medfrac}[2]{\frac{#1}{#2}} \newcommand{\textfrac}[2]{\frac{#1}{#2}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\e}{\operatorname{e}} \newcommand{\B}{\operatorname{B}} \newcommand{\Bbar}{\overline{\operatorname{B}}} \newcommand{\pr}{\operatorname{pr}} \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} \newcommand{\E}{\operatorname{E}} \newcommand{\V}{\operatorname{V}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\card}{\#} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math], [math]Y\sim\mathcal{N}(0,1,\mathbb{R}^d)[/math]. Show the following.

  • [math]\forall\:d\geqslant1\colon\E(\|X-Y\|-\sqrt{2d})\leqslant1/\sqrt{2d}[/math].
  • [math]\forall\:d\geqslant1\colon\V(\|X-Y\|)\leqslant 3[/math].

Hint: Check firstly [math]\V((X_i-Y_i)^2)=3[/math] by establishing that [math]X_i-Y_i\sim\mathcal{N}(0,2,\mathbb{R})[/math] and by using a suitable formula for computing the fourth moment. Conclude then that [math]\V(\|X-Y\|^2)\leqslant3d[/math]. Adapt finally the arguments we gave above for [math]\E(\|X\|-\sqrt{d})[/math] and [math]\V(\|X\|)[/math].