guide:99d739dbc8: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\indicator}[1]{\mathbbm{1}_{\left[ {#1} \right] }} | |||
\newcommand{\Real}{\hbox{Re}} | |||
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
This chapter takes techniques from stochastic control and applies them to portfolio management. The portfolio can be of varying type, two possibilites are a portfolio for investment of (personal) wealth, or a hedging portfolio with a short position in a derivative contract. The basic problem involves an investor with a self-financing wealth process and a concave utility function to quantify their risk aversion, from which their goal is to maximize their expected utility of terminal wealth and/or consumption. To exemplify the need for hedging obtained from optimal control, recall the price of volatility risk <math>\Lambda(t,s,x)</math> from [[guide:0875016693#prop:stochasticVolPDE |Proposition]] of [[guide:0875016693#chapt:stochVol |Chapter]]. The pricing PDE for stochastic volatility depends on <math>\Lambda</math>, but incompleteness of the market means that <math>\Lambda</math> may not be uniquely specified. However, an expression can be obtained from the solution to an optimal control, hence writing <math>\Lambda</math> as a function of the investor's risk aversion. This chapter will start by considering the basic problem of optimization of (personal) wealth, and later on will show how optimal control is used in hedging derivatives. | |||
==The Optimal Investment Problem== | |||
Consider a standard geometric Brownian motion for the price of a risky asset, | |||
<span id{{=}}"eq:dS_physicalMeasure"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:dS_physicalMeasure} | |||
\frac{dS_t}{S_t}=\mu dt+\sigma dW_t\ , | |||
\end{equation} | |||
</math> | |||
where <math>\mu\in\mathbb R</math>, <math>\sigma > 0</math>, and <math>W</math> is a Brownian motion under the statistical measure. There is also the risk-free bank account that pays interest at a rate <math>r\geq 0</math>. At time <math>t\geq 0</math> the investors has a portfolio value <math>X_t</math> with an allocation <math>\pi_t</math> in the risky asset and a consumption stream <math>c_t</math>. The dynamics of the portfolio are self-financing, | |||
<span id{{=}}"eq:dX_wealth"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:dX_wealth} | |||
dX_t=X_t\left(rdt+ \pi_t\left(\frac{dS_t}{S_t}-rdt\right)-c_tdt\right)\ , | |||
\end{equation} | |||
</math> | |||
where | |||
<math display="block"> | |||
\begin{align*} | |||
\pi_t&=\hbox{proportion of wealth in the risky asset,}\\ | |||
c_t&=\hbox{rate of consumption.} | |||
\end{align*} | |||
</math> | |||
A natural constraint on consumption is <math>c_t\geq 0</math> for all <math>t\geq 0</math>, and based on \eqref{eq:dX_wealth} a constraint of <math>X_t\geq 0</math> is enforced automatically. Here we have taken <math>X_t\geq 0</math> almost surely, but in general any finite lower bound on <math>X_t</math> is necessary to ensure no-arbitrage (i.e. <math>X_t\geq -M > -\infty </math> almost with constant <math>M</math> finite), otherwise there could be doubling strateguies. The optimization problem is then formulated as | |||
<span id{{=}}"eq:optimizationProblem"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:optimizationProblem} | |||
V(t,x)=\max_{\pi,c\geq0}\mathbb E\left[\int_t^TF(u,c_u,X_u)du+U(X_T)\Big|X_t=x\right]\ , | |||
\end{equation} | |||
</math> | |||
where <math>F</math> is a concave utility on consumption and wealth, <math>U</math> is a concave utility on terminal wealth, and the admissible pairs <math>(\pi_t,c_t)_{t\geq0}</math> are non-anticipating, adapted to <math>W</math>, with <math>\int_0^T|\pi_tX_t|^2dt < \infty</math> almost surely. We refer to <math>\mathbb E\left[\int_t^TF(u,c_u,X_u)du+U(X_T)\Big|X_t=x\right]</math> as the objective function, and '''refer to $V$ as the ''optimal value function.''''' | |||
'''Example''' | |||
\label{ex:optimalLog} | |||
Suppose that <math>F=0</math> and <math>U(x) = \log(x)</math>. There is no utility of consumption, so the optimal is <math>c_t=0</math> for all <math>t\geq 0</math>. Now apply It\^o's lemma, | |||
<math display="block">d\log(X_t) = rdt+ \pi_t\left(\frac{dS_t}{S_t}-rdt\right) -\frac{\sigma^2\pi_t^2}{2}dt\ ,</math> | |||
and then taking expectations, | |||
<math display="block">\mathbb E[\log(X_T)|X_t=x] =\log(x)+\mathbb E\left[\int_t^T\left(r+ \pi_u\left(\mu-r\right) -\frac{\sigma^2\pi_u^2}{2}\right)du\Big|X_t=x\right]\ ,</math> | |||
where the right-hand side is concave in <math>\pi_t</math>. Hence, the optimal strategy is | |||
<math display="block">\pi_t = \frac{\mu-r}{\sigma^2}\qquad\forall t\in[0,T]\ ,</math> | |||
which is the Sharpe ratio divided by the volatility. The optimal value function is | |||
<math display="block">V(t,x)=\max_\pi\mathbb E[\log(X_T)|X_t=x] = \log\left(xe^{\left(r+\frac{(\mu-r)^2}{2\sigma^2}\right)(T-t)}\right)\ ,</math> | |||
and using <math>U^{-1}(v) = e^v</math>, we find the '''certainty equivalent,''' | |||
<math display="block">X_t^{ce}=e^{-r(T-t)}U^{-1}\left(V(t,X_t)\right)= X_te^{\left(\frac{(\mu-r)^2}{2\sigma^2}\right)(T-t)}\ ,</math> | |||
which is the risk-free rate plus <math>\tfrac12</math> times the Sharpe-ratio squared. | |||
'''Example''' | |||
\label{ex:logOptimalConsumption} | |||
Suppose that <math>F(t,c_t,X_t) = e^{-\beta t}\log(c_tX_t)</math>, <math>U(x) = 0</math>, and <math>T=\infty</math>. The optimization problem is | |||
<math display="block">\max_{\pi,c\geq0}\mathbb E\left[\int_t^\infty e^{-\beta(u-t)}\log(c_uX_u)du\Big|X_t=x\right] = V(x)\ ,</math> | |||
which is constant in <math>t</math>. Now notice for any admissible <math>(\pi,c)</math> on <math>[t,t+\Delta t]</math> we have the dynamic programming principle, | |||
<math display="block">V(X_t)\geq e^{-\beta\Delta t}\mathbb E_tV(X_{t+\Delta t}) + \mathbb E_t\int_t^{t+\Delta t}e^{-\beta(u-t)}\log(c_uX_u)du\ ,</math> | |||
with equality if and only if <math>(\pi,c)</math> is chosen optimally over <math>[t,t+\Delta t]</math>, and hence | |||
<math display="block"> | |||
\begin{align*} | |||
&\frac{\mathbb E_tV(X_{t+\Delta t}) -V(X_t)}{\Delta t}\\ | |||
& \leq \frac{1-e^{-\beta\Delta t}}{\Delta t}\mathbb E_tV(X_{t+\Delta t}) -\frac{1}{\Delta t} \mathbb E_t\int_t^{t+\Delta t}e^{-\beta(u-t)}\log(c_uX_u)du\\ | |||
& \rightarrow \beta V(X_t) -\log(c_tX_t)\ , | |||
\end{align*} | |||
</math> | |||
as <math>\Delta t\rightarrow 0</math>. On the other hand, from It\^o's lemma we have | |||
<math display="block"> | |||
\begin{align*} | |||
dV(X_t) &= \left(\frac{\sigma^2\pi_t^2X_t^2}{2}\frac{\partial^2}{\partial x^2}V(X_t)+\left(r+\pi_t(\mu-r)-c_t\right)X_t\frac{\partial}{\partial x}V(X_t)\right)dt\\ | |||
&+\sigma\pi_tX_t\frac{\partial}{\partial x}V(X_t)dW_t\ , | |||
\end{align*} | |||
</math> | |||
and assuming the Brownian term vanishes under expectations, we have | |||
<math display="block"> | |||
\begin{align*} | |||
&\frac{\mathbb E_tV(X_{t+\Delta t}) -V(X_t)}{\Delta t}\\ | |||
& =\frac{1}{\Delta t}\mathbb E_t\int_t^{t+\Delta t}\left(\frac{\sigma^2\pi_u^2X_u^2}{2}\frac{\partial^2}{\partial x^2}V(X_u)+\left(r+\pi_u(\mu-r)-c_u\right)X_u\frac{\partial}{\partial x}V(X_u)\right)du\\ | |||
& \rightarrow \frac{\sigma^2\pi_t^2X_t^2}{2}\frac{\partial^2}{\partial x^2}V(X_t)+\left(r+\pi_t(\mu-r)-c_t\right)X_t\frac{\partial}{\partial x}V(X_t)\ , | |||
\end{align*} | |||
</math> | |||
as <math>\Delta t\rightarrow 0</math>. Hence, for all admissible pairs <math>(\pi,c)</math> the value function <math>V(x)</math> satisifies | |||
<math display="block"> \frac{\sigma^2\pi^2x^2}{2}\frac{\partial^2}{\partial x^2}V(x)+\left(r+\pi(\mu-r)-c\right)x\frac{\partial}{\partial x}V(x) - \beta V(x) +\log(cx)\leq 0\ ,</math> | |||
with equality if and only <math>\pi</math> and <math>c</math> are optimal, which leads to the equation | |||
<math display="block">\max_{\pi,c\geq 0}\left( \frac{\sigma^2\pi^2x^2}{2}\frac{\partial^2}{\partial x^2}V(x)+\left(r+\pi(\mu-r)-c\right)x\frac{\partial}{\partial x}V(x) - \beta V(x) +\log(cx)\right)=0\ .</math> | |||
Let's assume the ansatz | |||
<math display="block">V(x) = a\log(x) +b \ .</math> | |||
Then through first-order optimality conditions (i.e. by differentiating with respect to <math>\pi</math> and setting equal to zero) we find the optimal | |||
<math display="block">\pi(x)= -\frac{\mu-r}{\sigma^2 x}\frac{\frac{\partial}{\partial x}V(x)}{\frac{\partial^2}{\partial x^2}V(x)}=\frac{\mu-r}{\sigma^2 }\ .</math> | |||
Similarly, first-order optimality conditions for <math>c</math> yield | |||
<math display="block">c(x)= \frac{1}{x\frac{\partial}{\partial x}V(x)}=\frac{1}{a}\ .</math> | |||
Putting optimal <math>\pi_t</math> and <math>c_t</math> back into the equation for <math>V</math> along with the ansatz, we find | |||
<math display="block">\log(x/a)-\beta(a\log(x)+b)+\left(ar- 1\right)+\frac a2\frac{(\mu-r)^2}{\sigma^2}=0\ ,</math> | |||
and comparing <math>\log(x)</math> terms and non-<math>x</math>-dependent terms we find, | |||
<math display="block"> | |||
\begin{align*} | |||
a&=\frac1\beta \ ,\\ | |||
b&=\frac{1}{2\beta^2}\frac{(\mu-r)^2}{\sigma^2}+\frac{r}{\beta^2}+\frac1\beta\left(\log(\beta)-1\right)\ . | |||
\end{align*} | |||
</math> | |||
==The Hamilton-Jacobi-Bellman (HJB) Equation== | |||
[[#ex:optimalLog |Example]] is useful to get started and to get a sense for how an optimal control should look. [[#ex:logOptimalConsumption |Example]] is more instructive because it shows us how (i) the function <math>V</math> inherits concavity from <math>F</math> and <math>U</math>, and (ii) how it also shows how to derive the PDE that <math>V</math> should satisfy. | |||
The derivation starts with the dynamic programming principle, | |||
<math display="block">V(t,x)=\max_{\pi,c\geq0}\mathbb E\left[\int_t^{t+\Delta t}F(u,c_u,X_u)du+V(t+\Delta t,X_{t+\Delta t})\Big|X_t=x\right]\ ,</math> | |||
where <math>\max_{\pi,c}</math> is taken over the interval <math>[t,t+\Delta t]</math>. Applying It\^o's lemma to <math>V(t,X_t)</math>, we find | |||
<math display="block"> | |||
\begin{align*} | |||
&V(t+\Delta t,X_{t+\Delta t})\\ | |||
&= V(t,X_t)+ \int_t^{t+\Delta t}\left(\frac{\partial}{\partial t}+\frac{\sigma^2\pi_u^2X_u^2}{2}\frac{\partial^2}{\partial x^2}+\left(r+\pi_u(\mu-r)-c_u\right)X_u\frac{\partial}{\partial x}\right)V(u,X_u)du\\ | |||
&+\sigma\int_t^{t+\Delta t}\pi_uX_u\frac{\partial}{\partial x}V(u,X_u)dW_u\ , | |||
\end{align*} | |||
</math> | |||
for any admissible <math>(\pi,c)</math> over <math>[t,t+\Delta t]</math>. Hence, for any <math>(\pi,c)</math> on <math>[t,t+\Delta t]</math> we have | |||
<math display="block"> | |||
\begin{align*} | |||
&\mathbb E\left[\int_t^{t+\Delta t}\Bigg(F(u,c_u,X_u)+\Bigg(\frac{\partial}{\partial t}+\frac{\sigma^2\pi_u^2X_u^2}{2}\frac{\partial^2}{\partial x^2}\right.\\ | |||
&+\left.\left(r+\pi_u(\mu-r)-c_u\right)X_u\frac{\partial}{\partial x}\Bigg)V(u,X_u)\Bigg)du\Big|X_t=x\right]\leq 0\ , | |||
\end{align*} | |||
</math> | |||
with equality iff and only if an optimal <math>(\pi,c)</math> is chosen. Hence, dividing by <math>\Delta t</math> and taking the limt to zero, we obtain the so-called '''Hamilton-Jacobi-Bellman (HJB) equation:''' | |||
<span id{{=}}"eq:HJB"/> | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:HJB} | |||
\max_{\pi,c\geq0}\left(F(t,c)+\Bigg(\frac{\partial}{\partial t}+\frac{\sigma^2\pi^2x^2}{2}\frac{\partial^2}{\partial x^2}+\left(r+\pi(\mu-r)-c\right)x\frac{\partial}{\partial x}\Bigg)V(t,x)\right)&=0\ ,\\ | |||
\nonumber | |||
V(T,x)&=U(x)\ . | |||
\end{align} | |||
</math> | |||
==Merton's Optimal Investment Problem== | |||
Let <math>F=0</math> and consider a power utility function, | |||
<math display="block">U(x) = \frac{x^{1-\gamma}}{1-\gamma}\ ,</math> | |||
where <math>\gamma > 0</math>, <math>\gamma\neq1</math> is the risk aversion. The problem is to solve | |||
<math display="block">V(t,x)=\max_\pi\mathbb E[U(X_T)|X_t=x]\ ,</math> | |||
The HJB equation for this problem is | |||
<span id{{=}}"eq:HJBmerton"/> | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:HJBmerton} | |||
\left(\frac{\partial}{\partial t}+rx\frac{\partial}{\partial x}\right)V(t,x)+\max_{\pi}\left(\frac{\sigma^2\pi^2x^2}{2}\frac{\partial^2}{\partial x^2}V(t,x)+\pi(\mu-r)x\frac{\partial}{\partial x}V(t,x)\right)&=0\ ,\\ | |||
\nonumber | |||
V(T,x)&=U(x)\ , | |||
\end{align} | |||
</math> | |||
for which we find the optimal <math>\pi</math>, | |||
<math display="block">\pi_t = -\frac{\mu-r}{x\sigma^2} \frac{\frac{\partial}{\partial x}V(t,x)}{\frac{\partial^2}{\partial x^2}V(t,x)}\ . </math> | |||
Inserting the optimal <math>\pi_t</math> into \eqref{eq:HJBmerton} we obtain the nonlinear equation, | |||
<span id{{=}}"eq:HJBmerton_nonlinear"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\label{eq:HJBmerton_nonlinear} | |||
\left(\frac{\partial}{\partial t}+rx\frac{\partial}{\partial x}\right)V(t,x)-\frac{\left((\mu-r)\frac{\partial}{\partial x}V(t,x)\right)^2}{2\sigma^2\frac{\partial^2}{\partial x^2}V(t,x)}=0\ . | |||
\end{equation} | |||
</math> | |||
Then using the ansatz <math>V(t,x) = g(t)U(x)</math>, we find | |||
<math display="block"> | |||
\begin{align*} | |||
\frac{\partial}{\partial t}V(t,x)&= g'(t)U(x)\ ,\\ | |||
\frac{\partial}{\partial x}V(t,x)&= \frac{1-\gamma}{x}g(t)U(x)\ ,\\ | |||
\frac{\partial^2}{\partial x^2}V(t,x)&= -\frac{\gamma(1-\gamma)}{x^2}g(t)U(x)\ , | |||
\end{align*} | |||
</math> | |||
and inserting in \eqref{eq:HJBmerton_nonlinear} we find an ODE for <math>g</math>, | |||
<math display="block">g'(t) +r(1-\gamma)+\frac{(1-\gamma)(\mu-r)^2g(t)}{2\gamma\sigma^2}=0\ ,</math> | |||
with terminal condition <math>g(T)=1</math>. The solution is | |||
<math display="block">g(t) = e^{(1-\gamma)(T-t)\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}\ ,</math> | |||
and the optimal value function is | |||
<math display="block">V(t,x) = U(x)g(t)=\frac{\left(xe^{(T-t)\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}\right)^{1-\gamma}}{1-\gamma}=U\left(xe^{(T-t)\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}\right)\ .</math> | |||
and the certainty equivalent is | |||
<math display="block">X_t^{ce}=e^{-r(T-t)}U^{-1}(v(t,X_t)) = X_te^{(T-t)\left(\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}\ .</math> | |||
==Stochastic Returns== | |||
Consider the model | |||
<span id{{=}}"eq:SRM_stochControl"/><span id{{=}}"eq:SRM_dY_stochControl"/> | |||
<math display="block"> | |||
\begin{eqnarray} | |||
\label{eq:SRM_stochControl} | |||
dS_t&=&Y_t S_tdt+\sigma S_tdW_t\\ | |||
\label{eq:SRM_dY_stochControl} | |||
dY_t &=&\kappa(\mu-Y_t)dt+\beta dB_t\ , | |||
\end{eqnarray} | |||
</math> | |||
with <math>dW_tdB_t=\rho dt</math> where <math>\rho\in(-1,1)</math>. The interpretation of <math>Y_t</math> could be any of the following: <math>Y_t</math> is a dividend yield with uncertainty (although somewhat of strange model because it can be negative), or <math>Y_t</math> is the return rate on a commodities or bond portfolio where there is a role yield due to contango or backwardation. | |||
Let's assume the simple case <math>\mu=r=0</math>, for which the value function is | |||
<math display="block">V(t,x,y) = \max_\pi\mathbb E\left[U(X_T)\Big|X_t=x,Y_t=y\right]\ ,</math> | |||
and has HJB equation | |||
<span id{{=}}"eq:HJBstochReturns"/> | |||
<math display="block"> | |||
\begin{align} | |||
\nonumber | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2}{2}\frac{\partial^2}{\partial y^2}-\kappa y\frac{\partial}{\partial y}\right)V(t,x,y)&\\ | |||
\nonumber | |||
+\max_{\pi}\Bigg(\frac{\sigma^2x^2\pi^2}{2}\frac{\partial^2}{\partial x^2}V(t,x,y)+\pi xy\frac{\partial}{\partial x}V(t,x,y)&\\ | |||
\label{eq:HJBstochReturns} | |||
+\rho \pi x\beta\sigma\frac{\partial^2}{\partial x\partial y}V(t,x,y)\Bigg)&=0\ ,\\ | |||
\nonumber | |||
V(T,x,y)&=U(x)\ . | |||
\end{align} | |||
</math> | |||
The first-order condition for <math>\pi</math> yields the optimal | |||
<math display="block">\pi_t = -\frac{xy\frac{\partial}{\partial x}V(t,x,y)+\rho \pi x\beta\sigma\frac{\partial^2}{\partial x\partial y}V(t,x,y)}{\sigma^2x^2\frac{\partial^2}{\partial x^2}V(t,x,y)}\ .</math> | |||
For the power utility | |||
<math display="block">U(x) = \frac{x^{1-\gamma}}{1-\gamma}, </math> | |||
we have the ansatz <math>V(t,x,y) = U(x)g(t,y)</math> with | |||
<math display="block"> | |||
\begin{align*} | |||
\frac{\partial}{\partial t}V& = \frac{\partial}{\partial t}g(t,y)U(x)\ ,\\ | |||
\frac{\partial}{\partial x}V& =\frac{1-\gamma}{x} g(t,y)U(x)\ ,\\ | |||
\frac{\partial^2}{\partial x^2}V& =-\frac{(1-\gamma)\gamma}{x^2} g(t,y)U(x)\ ,\\ | |||
\frac{\partial^2}{\partial x\partial y}V& =\frac{1-\gamma}{x} \frac{\partial}{\partial y}g(t,y)U(x)\ , | |||
\end{align*} | |||
</math> | |||
all of which are inserted into equation \eqref{eq:HJBstochReturns} to get an equation for <math>g</math>: | |||
<math display="block"> | |||
\begin{align} | |||
\nonumber | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2}{2}\frac{\partial^2}{\partial y^2}-\kappa y\frac{\partial}{\partial y}\right)g(t,y)+\frac{1-\gamma}{2\sigma^2\gamma}\left(y+\frac{\rho \beta\sigma\frac{\partial}{\partial y}g(t,y)}{g(t,y)}\right)^2g(t,y)&=0\ ,\\ | |||
\nonumber | |||
g(T,y)&=1\ . | |||
\end{align} | |||
</math> | |||
We now apply another ansatz <math>g(t,y) = e^{a(t)y^2+b(t)}</math>, which when inserted into the equation for <math>g(t,y)</math> yields the following system: | |||
<math display="block"> | |||
\begin{align*} | |||
y^2&:~a'(t)=-2\beta^2\left(1+\frac{(1-\gamma)\rho^2}{\gamma}\right)a^2(t)-2\left(\frac{\rho\beta(1-\gamma)}{\sigma\gamma}-\kappa\right)a(t)-\frac{1-\gamma}{2\sigma^2\gamma}\ ,\\ | |||
1&:~b'(t)=-\beta^2a(t)\ , | |||
\end{align*} | |||
</math> | |||
with terminal conditions <math>a(T)=b(T)=0</math>. The solution <math>a(t)</math> can be written as a ratio, | |||
<math display="block">a(t) = \frac{v'(t)}{2\beta^2 \left(1+\frac{(1-\gamma)\rho^2}{\gamma}\right)v(t)}\ ,</math> | |||
where <math>v(t)</math> is the solution to a 2nd-order ODE, | |||
<math display="block">v''(t) +2\left(\frac{\rho\beta(1-\gamma)}{\sigma\gamma}-\kappa\right)v'(t)+\frac{(1-\gamma)\beta^2}{\sigma^2\gamma}\left(1+\frac{(1-\gamma)\rho^2}{\gamma}\right)v(t)=0\ . </math> | |||
The roots of this equation are | |||
<math display="block">m_\pm =-\left(\frac{\rho\beta(1-\gamma)}{\sigma\gamma}-\kappa\right)\pm\sqrt{\kappa^2-\frac{\beta(1-\gamma)}{\sigma\gamma}\left(2\kappa\rho+\frac{\beta}{\sigma}\right)}\ ,</math> | |||
which gives the general solution | |||
<math display="block">v(t) = C_1e^{m_+(T-t)}+C_2e^{m_-(T-t)}\ .</math> | |||
It is not necessary to fully determine constants <math>C_1</math> and <math>C_2</math> because we are mainly interested in the ratio <math>v'(t)/v(t)</math>.\\ | |||
'''Finite-Time Blowup.''' Complex valued <math>m_\pm</math> leads to finite-time blowup for the optimization problem. If the roots are complex then let <math>c = -\left(\frac{\rho\beta(1-\gamma)}{\sigma\gamma}-\kappa\right)</math> and <math>d = \frac{\beta(1-\gamma)}{\sigma\gamma}\left(2\kappa\rho+\frac{\beta}{\sigma}\right)-\kappa^2</math> so that the general solution is | |||
<math display="block">v(t) = e^{c(T-t)}\Big(C_1\cos(d(T-t))+C_2\sin(d(T-t))\Big)\ ,</math> | |||
and with <math>v'(T)=-cC_1-dC_2=0</math> to satisfy the terminal condition <math>a(T)=0</math>, so that | |||
<math display="block">v(t) = C_1e^{c(T-t)}\left(\cos(d(T-t))-\frac{c}{d}\sin(d(T-t))\right)\ .</math> | |||
The solution <math>a(t)</math> will blow at time <math>t^*</math> such that <math>\cos(d(T-t^*))-\frac{c}{d}\sin(d(T-t^*))=0</math>, that is <math>\tan(d(T-t^*))=\frac{d}{c}</math> or | |||
<math display="block">T-t^* = \frac{1}{d}\left(\pi\indicator{c\leq0}+\tan^{-1}\left(\frac{d}{c}\right)\right)\ .</math> | |||
==Stochastic Volatility== | |||
Now let's consider the same optimal terminal wealth problem as the Merton problem, with exponential utility | |||
<math display="block">U(x) = -\frac1\gamma e^{-\gamma x}\qquad\hbox{where }\gamma > 0\ ,</math> | |||
and in the incomplete market of stochastic volatility, | |||
<span id{{=}}"eq:SVM_stochControl"/><span id{{=}}"eq:dY_stochControl"/> | |||
<math display="block"> | |||
\begin{eqnarray} | |||
\label{eq:SVM_stochControl} | |||
dS_t&=&\mu S_tdt+\sigma(Y_t)S_tdW_t\\ | |||
\label{eq:dY_stochControl} | |||
dY_t &=&\alpha(Y_t)dt+\beta(Y_t)dB_t\ , | |||
\end{eqnarray} | |||
</math> | |||
where <math>dW_t\cdot dB_t = \rho dt</math>. From \eqref{eq:SVM_stochControl} and \eqref{eq:dY_stochControl}, we have the wealth process, | |||
<math display="block">dX_t = rX_tdt+\pi_t\left(\frac{dS_t}{S_t}-rdt\right)\ ,</math> | |||
no longer enforcing the non-negativity constraint. The optimization problem is | |||
<math display="block">V(t,x,y) = \max_\pi\mathbb E\left[U(X_T)\Big|X_t=x,Y_t=y\right]\ ,</math> | |||
but the technique used in [[#ex:optimalLog |Example]] does not apply because there is some local martingale behavior in the stochastic integrals. Instead, we arrive at the optimal solution using the HJB equation. The HJB equation is | |||
<span id{{=}}"eq:HJBstochVol"/> | |||
<math display="block"> | |||
\begin{align} | |||
\nonumber | |||
\left(\frac{\partial}{\partial t}+rx\frac{\partial}{\partial x}+\frac{\beta^2(y)}{2}\frac{\partial^2}{\partial y^2}+\alpha(y)\frac{\partial}{\partial y}\right)V(t,x,y)&\\ | |||
\nonumber | |||
+\max_{\pi}\Bigg(\frac{\sigma^2(y)\pi^2}{2}\frac{\partial^2}{\partial x^2}V(t,x,y)+\pi(\mu-r)\frac{\partial}{\partial x}V(t,x,y)&\\ | |||
\label{eq:HJBstochVol} | |||
+\rho \pi \beta(y)\sigma(y)\frac{\partial^2}{\partial x\partial y}V(t,x,y)\Bigg)&=0\ ,\\ | |||
\nonumber | |||
V(T,x)&=U(x)\ . | |||
\end{align} | |||
</math> | |||
Using the ansatz <math>V(t,x,y) = U(xe^{r(T-t)})g(t,y)</math>, we have | |||
<math display="block"> | |||
\begin{align*} | |||
\frac{\partial}{\partial t}V& = \gamma rx e^{r(T-t)} V+U(xe^{r(T-t)})\frac{\partial}{\partial t}g(t,y)\ ,\\ | |||
\frac{\partial}{\partial x}V& = -\gamma e^{r(T-t)} V\ ,\\ | |||
\frac{\partial^2}{\partial x^2}V& = \gamma^2 e^{2r(T-t)}V\ ,\\ | |||
\frac{\partial^2}{\partial x\partial y}V& = -\gamma e^{r(T-t)} U(xe^{r(T-t)})\frac{\partial}{\partial y}g(t,y)\ ,\\ | |||
\end{align*} | |||
</math> | |||
which we insert into \eqref{eq:HJBstochVol} to find a PDE for <math>g</math>, | |||
<span id{{=}}"eq:HJBstochVol_g"/> | |||
<math display="block"> | |||
\begin{align} | |||
\nonumber | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2(y)}{2}\frac{\partial^2}{\partial y^2}+\alpha(y)\frac{\partial}{\partial y}\right)g(t,y)&\\ | |||
\label{eq:HJBstochVol_g} | |||
+\min_{\pi}\Bigg(\frac{\gamma^2e^{2r(T-t)}\sigma^2(y)\pi^2}{2}g(t,y)-\gamma e^{r(T-t)}\pi\left((\mu-r)g(t,y)+\rho \beta(y)\sigma(y)\frac{\partial}{\partial y}g(t,y)\right)\Bigg)&=0\ ,\\ | |||
\nonumber | |||
g(T,y)&=1\ , | |||
\end{align} | |||
</math> | |||
and the optimal strategy is | |||
<math display="block">\pi_t = e^{-r(T-t)}\left(\frac{\mu-r}{\gamma\sigma^2(y)}+\rho \frac{ \beta(y)}{\gamma\sigma(y)}\frac{\frac{\partial}{\partial y}g(t,y)}{g(t,y)}\right)\ .</math> | |||
Inserting this optimal <math>\pi_t</math> into \eqref{eq:HJBstochVol_g} yields the nonlinear equation | |||
<span id{{=}}"eq:stochVol_Merton_g"/> | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:stochVol_Merton_g} | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2(y)}{2}\frac{\partial^2}{\partial y^2}+\alpha(y)\frac{\partial}{\partial y}\right)g(t,y)-\frac{\sigma^2(y)}{2}\left(\frac{\mu-r}{\sigma^2(y)}+\rho \frac{ \beta(y)}{\sigma(y)}\frac{\frac{\partial}{\partial y}g(t,y)}{g(t,y)}\right)^2 g(t,y)&=0\ . | |||
\end{align} | |||
</math> | |||
This equation can be reduced to a linear PDE if we look for a function <math>\psi(t,y)</math> such that | |||
<math display="block">g(t,y) = \psi(t,y)^q\ ,</math> | |||
where <math>q</math> is a parameter. Differentiating yields, | |||
<math display="block"> | |||
\begin{align*} | |||
\frac{\partial}{\partial t}g &= \frac{qg}{\psi}\frac{\partial}{\partial t}\psi\\ | |||
\frac{\partial}{\partial y}g &= \frac{qg}{\psi}\frac{\partial}{\partial y}\psi\\ | |||
\frac{\partial^2}{\partial y^2}g &= qg\left(\frac1\psi\frac{\partial^2}{\partial y^2}\psi+\frac{q-1}{\psi^2}\left(\frac{\partial}{\partial y}\psi\right)^2\right)\ , | |||
\end{align*} | |||
</math> | |||
and then plugging into \eqref{eq:stochVol_Merton_g} with chosen parameter <math>q=1/(1+\rho^2)</math> yields a linear equation: | |||
<span id{{=}}"eq:linearPDEstochVolControl"/> | |||
<math display="block"> | |||
\begin{align} | |||
\label{eq:linearPDEstochVolControl} | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2(y)}{2}\frac{\partial^2}{\partial y^2}+\left(\alpha(y)-\rho \frac{(\mu-r) \beta(y)}{\sigma(y)}\right)\frac{\partial}{\partial y}\right)\psi(t,y)-\frac{(\mu-r)^2}{2q\sigma^2(y)}\psi(t,y)&=0\ . | |||
\end{align} | |||
</math> | |||
'''Example''' | |||
Consider a futures contract <math>F_{t,T}</math> with settlement date <math>T</math> and stochastic volatility and returns, | |||
<math display="block"> | |||
\begin{align*} | |||
\frac{dF_{t,T}}{F_{t,T}}&=\mu Y_tdt+\sqrt{Y_t}dW_t\\ | |||
dY_t&=\kappa(\bar Y-Y_t)dt+\beta\sqrt{Y_t}dB_t | |||
\end{align*} | |||
</math> | |||
where <math>\beta^2\leq 2\kappa\bar Y</math> and <math>dW_tdB_t=\rho dt</math>. The wealth process for futures trading is | |||
<math display="block">dX_t = rX_tdt+ \pi_t\frac{dF_{t,T}}{F_{t,T}}\ .</math> | |||
For <math>U(x) = -\frac1\gamma e^{-\gamma x}</math> the optimal terminal expected utility is | |||
<math display="block">V(t,x,y)=U(xe^{r(T-t)})\psi(t,y)^q\ ,</math> | |||
where <math>\psi(t,y)</math> is similar to a solution to equation \eqref{eq:linearPDEstochVolControl}, except the equation has no <math>r</math>, | |||
<math display="block"> | |||
\begin{align*} | |||
\left(\frac{\partial}{\partial t}+\frac{\beta^2y}{2}\frac{\partial^2}{\partial y^2}+\left(\kappa(\bar Y-y)-\rho \mu\beta y\right)\frac{\partial}{\partial y}\right)\psi(t,y)-\frac{\mu^2y}{2q}\psi(t,y)&=0\ . | |||
\end{align*} | |||
</math> | |||
It can be further shown that the solution to this equation is of the form | |||
<math display="block">\psi(t,y) = e^{a(t)y+b(t)}\ ,</math> | |||
with <math>a(T)=b(T)=0</math>, and where <math>a(t)</math> and <math>b(t)</math> satisfy ODEs, | |||
<math display="block"> | |||
\begin{align*} | |||
a'(t)+\frac{\beta^2}{2}a^2(t)-\left(\kappa+\rho \mu\beta \right)a(t)-\frac{\mu^2}{2q}&=0\\ | |||
b'(t)+\kappa\bar Ya(t)&=0\ , | |||
\end{align*} | |||
</math> | |||
both of which can be solved explicitly. | |||
==Indifference Pricing== | |||
Stochastic control for terminal wealth can be implemented to find the the price of a call option under stochastic volatility, | |||
<math display="block">V^{h}(t,x,y,s) = \max_\pi\mathbb E\left[U(X_T-(S_T-K)^+)\Big|X_t=x,Y_t=y,S_t=s\right]\ ,</math> | |||
where the investor now hedges a short position in a call option with strike <math>K</math>. Compared to the same investor's value function that is not short the call | |||
<math display="block">V^0(t,x,y) = \max_\pi\mathbb E\left[U(X_T)\Big|X_t=x,Y_t=y\right]\ ,</math> | |||
we look for the amount of cash <math>\</math>p<math> such that the | |||
<math display="block">V^{h}(t,x+p,y,s) = V^{0}(t,x,y)\ .</math> | |||
The extra cash makes the hedger ''utility indifferent'' to the short position. With exponential utility there is a separation of variables, | |||
<math display="block"> | |||
\begin{align*} | |||
V(t,x,y,s)&=\max_\pi\mathbb E\left[-\frac1\gamma e^{-\gamma(X_T-(S_T-K)^+)}\Big|X_t=x,Y_t=y,S_t=s\right]\\ | |||
&=-\frac1\gamma e^{-\gamma xe^{r(T-t)}}\min_\pi\mathbb E\left[e^{-\gamma\left(\int_t^Te^{r(T-u)}\pi_u\left(\frac{dS_u}{S_u}-rdu\right)-(S_T-K)^+\right)} \Big|Y_t=y,S_t=s\right]\\ | |||
&=U\left(xe^{r(T-t)}\right)g^h(t,y,s)\ , | |||
\end{align*} | |||
</math> | |||
where we've used the differential </math>d\left(e^{r(T-t)}X_t\right) = e^{r(T-t)}\pi_t\left(\frac{dS_t}{S_t}-rdt\right)<math>. Hence we find a price </math>\$p<math> such that </math>U\left(pe^{r(T-t)}\right) = g(t,y)/g^h(t,y,s)<math>, where </math>g(t,y)<math> is the solution from \eqref{eq:HJBstochVol_g}. | |||
Depending on the risk-aversion coefficient </math>\gamma<math>, there will be different prices </math>\$p<math>. This brings us back to the price of volatility risk </math>\Lambda(t,s,x)<math> from [[guide:0875016693#prop:stochasticVolPDE |Proposition]] of [[guide:0875016693#chapt:stochVol |Chapter]]. Namely, investors with different risk aversion will have a different </math>\Lambda<math> for their martingale evaluation of the call option. | |||
If an indifference price is obtained then there is a solution to both optimization problems, and hence there is no-arbitrage and the range of prices for </math>\$c<math> will be a no-arbitrage interval. For complete markets there will be a single price </math>\$c$ for all levels of risk aversion. | |||
\appendix | |||
\addappheadtotoc | |||
\appendixpage | |||
\noappendicestocpagenum | |||
==General references== | |||
{{cite arXiv|last1=Papanicolaou|first1=Andrew|year=2015|title=Introduction to Stochastic Differential Equations (SDEs) for Finance|eprint=1504.05309|class=q-fin.MF}} |
Revision as of 00:30, 4 June 2024
This chapter takes techniques from stochastic control and applies them to portfolio management. The portfolio can be of varying type, two possibilites are a portfolio for investment of (personal) wealth, or a hedging portfolio with a short position in a derivative contract. The basic problem involves an investor with a self-financing wealth process and a concave utility function to quantify their risk aversion, from which their goal is to maximize their expected utility of terminal wealth and/or consumption. To exemplify the need for hedging obtained from optimal control, recall the price of volatility risk [math]\Lambda(t,s,x)[/math] from Proposition of Chapter. The pricing PDE for stochastic volatility depends on [math]\Lambda[/math], but incompleteness of the market means that [math]\Lambda[/math] may not be uniquely specified. However, an expression can be obtained from the solution to an optimal control, hence writing [math]\Lambda[/math] as a function of the investor's risk aversion. This chapter will start by considering the basic problem of optimization of (personal) wealth, and later on will show how optimal control is used in hedging derivatives.
The Optimal Investment Problem
Consider a standard geometric Brownian motion for the price of a risky asset,
where [math]\mu\in\mathbb R[/math], [math]\sigma \gt 0[/math], and [math]W[/math] is a Brownian motion under the statistical measure. There is also the risk-free bank account that pays interest at a rate [math]r\geq 0[/math]. At time [math]t\geq 0[/math] the investors has a portfolio value [math]X_t[/math] with an allocation [math]\pi_t[/math] in the risky asset and a consumption stream [math]c_t[/math]. The dynamics of the portfolio are self-financing,
where
A natural constraint on consumption is [math]c_t\geq 0[/math] for all [math]t\geq 0[/math], and based on \eqref{eq:dX_wealth} a constraint of [math]X_t\geq 0[/math] is enforced automatically. Here we have taken [math]X_t\geq 0[/math] almost surely, but in general any finite lower bound on [math]X_t[/math] is necessary to ensure no-arbitrage (i.e. [math]X_t\geq -M \gt -\infty [/math] almost with constant [math]M[/math] finite), otherwise there could be doubling strateguies. The optimization problem is then formulated as
where [math]F[/math] is a concave utility on consumption and wealth, [math]U[/math] is a concave utility on terminal wealth, and the admissible pairs [math](\pi_t,c_t)_{t\geq0}[/math] are non-anticipating, adapted to [math]W[/math], with [math]\int_0^T|\pi_tX_t|^2dt \lt \infty[/math] almost surely. We refer to [math]\mathbb E\left[\int_t^TF(u,c_u,X_u)du+U(X_T)\Big|X_t=x\right][/math] as the objective function, and refer to $V$ as the optimal value function.
Example \label{ex:optimalLog} Suppose that [math]F=0[/math] and [math]U(x) = \log(x)[/math]. There is no utility of consumption, so the optimal is [math]c_t=0[/math] for all [math]t\geq 0[/math]. Now apply It\^o's lemma,
and then taking expectations,
where the right-hand side is concave in [math]\pi_t[/math]. Hence, the optimal strategy is
which is the Sharpe ratio divided by the volatility. The optimal value function is
and using [math]U^{-1}(v) = e^v[/math], we find the certainty equivalent,
which is the risk-free rate plus [math]\tfrac12[/math] times the Sharpe-ratio squared.
Example \label{ex:logOptimalConsumption} Suppose that [math]F(t,c_t,X_t) = e^{-\beta t}\log(c_tX_t)[/math], [math]U(x) = 0[/math], and [math]T=\infty[/math]. The optimization problem is
which is constant in [math]t[/math]. Now notice for any admissible [math](\pi,c)[/math] on [math][t,t+\Delta t][/math] we have the dynamic programming principle,
with equality if and only if [math](\pi,c)[/math] is chosen optimally over [math][t,t+\Delta t][/math], and hence
as [math]\Delta t\rightarrow 0[/math]. On the other hand, from It\^o's lemma we have
and assuming the Brownian term vanishes under expectations, we have
as [math]\Delta t\rightarrow 0[/math]. Hence, for all admissible pairs [math](\pi,c)[/math] the value function [math]V(x)[/math] satisifies
with equality if and only [math]\pi[/math] and [math]c[/math] are optimal, which leads to the equation
Let's assume the ansatz
Then through first-order optimality conditions (i.e. by differentiating with respect to [math]\pi[/math] and setting equal to zero) we find the optimal
Similarly, first-order optimality conditions for [math]c[/math] yield
Putting optimal [math]\pi_t[/math] and [math]c_t[/math] back into the equation for [math]V[/math] along with the ansatz, we find
and comparing [math]\log(x)[/math] terms and non-[math]x[/math]-dependent terms we find,
The Hamilton-Jacobi-Bellman (HJB) Equation
Example is useful to get started and to get a sense for how an optimal control should look. Example is more instructive because it shows us how (i) the function [math]V[/math] inherits concavity from [math]F[/math] and [math]U[/math], and (ii) how it also shows how to derive the PDE that [math]V[/math] should satisfy. The derivation starts with the dynamic programming principle,
where [math]\max_{\pi,c}[/math] is taken over the interval [math][t,t+\Delta t][/math]. Applying It\^o's lemma to [math]V(t,X_t)[/math], we find
for any admissible [math](\pi,c)[/math] over [math][t,t+\Delta t][/math]. Hence, for any [math](\pi,c)[/math] on [math][t,t+\Delta t][/math] we have
with equality iff and only if an optimal [math](\pi,c)[/math] is chosen. Hence, dividing by [math]\Delta t[/math] and taking the limt to zero, we obtain the so-called Hamilton-Jacobi-Bellman (HJB) equation:
Merton's Optimal Investment Problem
Let [math]F=0[/math] and consider a power utility function,
where [math]\gamma \gt 0[/math], [math]\gamma\neq1[/math] is the risk aversion. The problem is to solve
The HJB equation for this problem is
for which we find the optimal [math]\pi[/math],
Inserting the optimal [math]\pi_t[/math] into \eqref{eq:HJBmerton} we obtain the nonlinear equation,
Then using the ansatz [math]V(t,x) = g(t)U(x)[/math], we find
and inserting in \eqref{eq:HJBmerton_nonlinear} we find an ODE for [math]g[/math],
with terminal condition [math]g(T)=1[/math]. The solution is
and the optimal value function is
and the certainty equivalent is
Stochastic Returns
Consider the model
with [math]dW_tdB_t=\rho dt[/math] where [math]\rho\in(-1,1)[/math]. The interpretation of [math]Y_t[/math] could be any of the following: [math]Y_t[/math] is a dividend yield with uncertainty (although somewhat of strange model because it can be negative), or [math]Y_t[/math] is the return rate on a commodities or bond portfolio where there is a role yield due to contango or backwardation.
Let's assume the simple case [math]\mu=r=0[/math], for which the value function is
and has HJB equation
The first-order condition for [math]\pi[/math] yields the optimal
For the power utility
we have the ansatz [math]V(t,x,y) = U(x)g(t,y)[/math] with
all of which are inserted into equation \eqref{eq:HJBstochReturns} to get an equation for [math]g[/math]:
We now apply another ansatz [math]g(t,y) = e^{a(t)y^2+b(t)}[/math], which when inserted into the equation for [math]g(t,y)[/math] yields the following system:
with terminal conditions [math]a(T)=b(T)=0[/math]. The solution [math]a(t)[/math] can be written as a ratio,
where [math]v(t)[/math] is the solution to a 2nd-order ODE,
The roots of this equation are
which gives the general solution
It is not necessary to fully determine constants [math]C_1[/math] and [math]C_2[/math] because we are mainly interested in the ratio [math]v'(t)/v(t)[/math].\\ Finite-Time Blowup. Complex valued [math]m_\pm[/math] leads to finite-time blowup for the optimization problem. If the roots are complex then let [math]c = -\left(\frac{\rho\beta(1-\gamma)}{\sigma\gamma}-\kappa\right)[/math] and [math]d = \frac{\beta(1-\gamma)}{\sigma\gamma}\left(2\kappa\rho+\frac{\beta}{\sigma}\right)-\kappa^2[/math] so that the general solution is
and with [math]v'(T)=-cC_1-dC_2=0[/math] to satisfy the terminal condition [math]a(T)=0[/math], so that
The solution [math]a(t)[/math] will blow at time [math]t^*[/math] such that [math]\cos(d(T-t^*))-\frac{c}{d}\sin(d(T-t^*))=0[/math], that is [math]\tan(d(T-t^*))=\frac{d}{c}[/math] or
Stochastic Volatility
Now let's consider the same optimal terminal wealth problem as the Merton problem, with exponential utility
and in the incomplete market of stochastic volatility,
where [math]dW_t\cdot dB_t = \rho dt[/math]. From \eqref{eq:SVM_stochControl} and \eqref{eq:dY_stochControl}, we have the wealth process,
no longer enforcing the non-negativity constraint. The optimization problem is
but the technique used in Example does not apply because there is some local martingale behavior in the stochastic integrals. Instead, we arrive at the optimal solution using the HJB equation. The HJB equation is
Using the ansatz [math]V(t,x,y) = U(xe^{r(T-t)})g(t,y)[/math], we have
which we insert into \eqref{eq:HJBstochVol} to find a PDE for [math]g[/math],
and the optimal strategy is
Inserting this optimal [math]\pi_t[/math] into \eqref{eq:HJBstochVol_g} yields the nonlinear equation
This equation can be reduced to a linear PDE if we look for a function [math]\psi(t,y)[/math] such that
where [math]q[/math] is a parameter. Differentiating yields,
and then plugging into \eqref{eq:stochVol_Merton_g} with chosen parameter [math]q=1/(1+\rho^2)[/math] yields a linear equation:
Example Consider a futures contract [math]F_{t,T}[/math] with settlement date [math]T[/math] and stochastic volatility and returns,
where [math]\beta^2\leq 2\kappa\bar Y[/math] and [math]dW_tdB_t=\rho dt[/math]. The wealth process for futures trading is
For [math]U(x) = -\frac1\gamma e^{-\gamma x}[/math] the optimal terminal expected utility is
where [math]\psi(t,y)[/math] is similar to a solution to equation \eqref{eq:linearPDEstochVolControl}, except the equation has no [math]r[/math],
It can be further shown that the solution to this equation is of the form
with [math]a(T)=b(T)=0[/math], and where [math]a(t)[/math] and [math]b(t)[/math] satisfy ODEs,
both of which can be solved explicitly.
Indifference Pricing
Stochastic control for terminal wealth can be implemented to find the the price of a call option under stochastic volatility,
where the investor now hedges a short position in a call option with strike [math]K[/math]. Compared to the same investor's value function that is not short the call
we look for the amount of cash [math]\[/math]p[math] such that the \ltmath display="block"\gtV^{h}(t,x+p,y,s) = V^{0}(t,x,y)\ .[/math] The extra cash makes the hedger utility indifferent to the short position. With exponential utility there is a separation of variables,
where we've used the differential </math>d\left(e^{r(T-t)}X_t\right) = e^{r(T-t)}\pi_t\left(\frac{dS_t}{S_t}-rdt\right)[math]. Hence we find a price [/math]\$p[math] such that [/math]U\left(pe^{r(T-t)}\right) = g(t,y)/g^h(t,y,s)[math], where [/math]g(t,y)[math] is the solution from \eqref{eq:HJBstochVol_g}. Depending on the risk-aversion coefficient [/math]\gamma[math], there will be different prices [/math]\$p[math]. This brings us back to the price of volatility risk [/math]\Lambda(t,s,x)[math] from [[guide:0875016693#prop:stochasticVolPDE |Proposition]] of [[guide:0875016693#chapt:stochVol |Chapter]]. Namely, investors with different risk aversion will have a different [/math]\Lambda[math] for their martingale evaluation of the call option. If an indifference price is obtained then there is a solution to both optimization problems, and hence there is no-arbitrage and the range of prices for [/math]\$c[math] will be a no-arbitrage interval. For complete markets there will be a single price [/math]\$c$ for all levels of risk aversion.
\appendix \addappheadtotoc \appendixpage \noappendicestocpagenum
General references
Papanicolaou, Andrew (2015). "Introduction to Stochastic Differential Equations (SDEs) for Finance". arXiv:1504.05309 [q-fin.MF].