guide:85577edf09: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\indicator}[1]{\mathbbm{1}_{\left[ {#1} \right] }} | |||
\newcommand{\Real}{\hbox{Re}} | |||
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
\label{app:martingalesStoppingTimes} | |||
Let <math>\mathcal F_t</math> denote a <math>\sigma</math>-algebra. A process <math>X_t</math> is an <math>\mathcal F_t</math>-martingale if and only if | |||
<math display="block">\mathbb E_tX_T = X_t\qquad\forall t\leq T\ ,</math> | |||
where <math>\mathbb E_t=\mathbb E[~\cdot~|\mathcal F_t]</math>. A process <math>X_t</math> is a submartingale if and only if | |||
<math display="block">\mathbb E_tX_T \geq X_t\qquad\forall t\leq T\ ,</math> | |||
and a supermartingale if and only if | |||
<math display="block">\mathbb E_tX_T \leq X_t\qquad\forall t\leq T\ .</math> | |||
Note that true martingale is both a sub and supermartingale. | |||
==Stopping Times== | |||
In probability theory, a stopping time is a a stochastic time that is non-anticipative of the underlying process. For instance, for a stock price <math>S_t</math> a stopping time is the first time the price reaches a level <math>M</math>, | |||
<math display="block">\tau = \inf\{t > 0|S_t\geq M\}\ .</math> | |||
The non-anticipativeness of the stopping is important because there are some events that are seemingly similar but are not stopping times, for instance | |||
<math display="block">\nu=\sup\{t > 0|S_t < M\}</math> | |||
'''is not a stopping time.''' | |||
Stopping times are useful when discussing martingales. For example, so-called stopped-processes inherit the sub or supermartingale property. Namely, <math>X_{t\wedge\tau}</math> is a sub or supermartingale of <math>X_t</math> is a sub or supermartingale, respectively. There is also the optional stopping theorem: | |||
{{proofcard|Theorem (Optional Stopping Theorem)|theorem-1|Let <math>X_t</math> be a submartingale and let <math>\tau</math> be a stopping time. If <math>\tau < \infty </math> a.s. and <math>X_{t\wedge\tau}</math> uniformly integrable, then <math>\mathbb EX_0\leq \mathbb EX_\tau</math> with equality if <math>X_t</math> is a martingale.|}} | |||
An example application of the optional stopping theorem is Gambler's ruin: Let | |||
<math display="block">\tau=\inf\{t > 0|W_t\notin (a,b)\}\ ,</math> | |||
where <math>0 < b < \infty</math> and <math>-\infty < a < 0</math>. Then <math>\mathbb P(\tau < \infty)=1</math> and by optional stopping, | |||
<math display="block"> | |||
\begin{align*} | |||
0&=W_0=\mathbb EW_\tau\\ | |||
&= a\mathbb P(W_\tau=a)+b(1-\mathbb P(W_\tau=a))\\ | |||
&=(a-b)\mathbb P(W_\tau=a)+b\ , | |||
\end{align*} | |||
</math> | |||
which can be simplified to get | |||
<math display="block">\mathbb P(W_\tau=a) = \frac{b}{b-a}\ .</math> | |||
==Local Martingales== | |||
First define a local martingale: | |||
{{defncard|label=Local Martingale|id=|A process <math>X_t</math> is a local martingale if there exists a sequence of finite and increasing stopping times <math>\tau_n</math> such that <math>\mathbb P(\tau_n\rightarrow\infty\hbox{ as }n\rightarrow\infty)=1</math> and <math>X_{t\wedge\tau_n}</math> is a true martingale for any <math>n</math>. }} | |||
Some remarks are in order: | |||
{{alert-info | | |||
In discrete time there are no local martingales; a martingale is a martingale. | |||
}} | |||
{{alert-info | | |||
A true martingale <math>X_t</math> is a local martingale, and any bounded local martingale is in fact a true martingale. | |||
}} | |||
The It\^o stochastic integral is in general a local martingale, not necessarily a true martingale. That is, | |||
<math display="block">I_t = \int_0^t\sigma_udW_u\ ,</math> | |||
is only a local martingale, but there exists stopping times <math>\tau_n</math> such that | |||
<math display="block">I_{t\wedge\tau_n} = \int_0^{t\wedge\tau_n}\sigma_udW_u\ ,</math> | |||
is a true martingale. For It\^o integrals there is the following theorem for a sufficient (but not necessary) condition for true martingales: | |||
{{proofcard|Theorem|thm:finiteItoIsometry|The It\^o integral <math> \int_0^t\sigma_udW_u</math> is a true martingale on <math>[0,T]</math> if | |||
<math display="block">\mathbb E\int_0^T\sigma_s^2ds < \infty \ ,</math> | |||
i.e., the It\^o isometry is finite.|}} | |||
For the stochastic integral <math>I_t = \int_0^t\sigma_udW_u</math> we can define | |||
<math display="block">\tau_n = \inf\left\{t > 0\Bigg|\int_0^t\sigma_u^2ds\geq n\right\}\wedge T\ ,</math> | |||
for which we have a bounded It\^o isometry, and hence [[#thm:finiteItoIsometry |Theorem]] applies to make <math>I_{t\wedge\tau_n}</math> a martingale on <math>[0,T]</math>. | |||
An example of a local martingale is the constant elasticity of volatility (CEV) model, | |||
<math display="block">dS_t = \sigma S_t^{\alpha}dW_t\ ,</math> | |||
with <math>0\leq\alpha\leq 2</math>; <math>S_t</math> is strictly a local martingale for <math>1 < \alpha\leq 2</math>. For <math>\alpha=2</math> one can check using PDEs that the transition density is | |||
<math display="block">p_t(z|s) = \frac{s}{z^3\sqrt{2\pi t\sigma^2}}\left(e^{-\frac{\left(\frac1z-\frac1s\right)^2}{2t\sigma^2}}-e^{-\frac{\left(\frac1z+\frac1s\right)^2}{2t\sigma^2}}\right)\ .</math> | |||
One can check that <math>\mathbb ES_t^4=\infty</math> for all <math>t > 0</math> so that [[#thm:finiteItoIsometry |Theorem]] does not apply, but to see that it is a strict local martingale one must also check that <math>\mathbb E_tS_T < S_t</math> for all <math>t < T</math>. | |||
==General references== | |||
{{cite arXiv|last1=Papanicolaou|first1=Andrew|year=2015|title=Introduction to Stochastic Differential Equations (SDEs) for Finance|eprint=1504.05309|class=q-fin.MF}} |
Revision as of 00:30, 4 June 2024
\label{app:martingalesStoppingTimes} Let [math]\mathcal F_t[/math] denote a [math]\sigma[/math]-algebra. A process [math]X_t[/math] is an [math]\mathcal F_t[/math]-martingale if and only if
where [math]\mathbb E_t=\mathbb E[~\cdot~|\mathcal F_t][/math]. A process [math]X_t[/math] is a submartingale if and only if
and a supermartingale if and only if
Note that true martingale is both a sub and supermartingale.
Stopping Times
In probability theory, a stopping time is a a stochastic time that is non-anticipative of the underlying process. For instance, for a stock price [math]S_t[/math] a stopping time is the first time the price reaches a level [math]M[/math],
The non-anticipativeness of the stopping is important because there are some events that are seemingly similar but are not stopping times, for instance
is not a stopping time. Stopping times are useful when discussing martingales. For example, so-called stopped-processes inherit the sub or supermartingale property. Namely, [math]X_{t\wedge\tau}[/math] is a sub or supermartingale of [math]X_t[/math] is a sub or supermartingale, respectively. There is also the optional stopping theorem:
Let [math]X_t[/math] be a submartingale and let [math]\tau[/math] be a stopping time. If [math]\tau \lt \infty [/math] a.s. and [math]X_{t\wedge\tau}[/math] uniformly integrable, then [math]\mathbb EX_0\leq \mathbb EX_\tau[/math] with equality if [math]X_t[/math] is a martingale.
An example application of the optional stopping theorem is Gambler's ruin: Let
where [math]0 \lt b \lt \infty[/math] and [math]-\infty \lt a \lt 0[/math]. Then [math]\mathbb P(\tau \lt \infty)=1[/math] and by optional stopping,
which can be simplified to get
Local Martingales
First define a local martingale:
A process [math]X_t[/math] is a local martingale if there exists a sequence of finite and increasing stopping times [math]\tau_n[/math] such that [math]\mathbb P(\tau_n\rightarrow\infty\hbox{ as }n\rightarrow\infty)=1[/math] and [math]X_{t\wedge\tau_n}[/math] is a true martingale for any [math]n[/math].
Some remarks are in order:
In discrete time there are no local martingales; a martingale is a martingale.
A true martingale [math]X_t[/math] is a local martingale, and any bounded local martingale is in fact a true martingale.
The It\^o stochastic integral is in general a local martingale, not necessarily a true martingale. That is,
is only a local martingale, but there exists stopping times [math]\tau_n[/math] such that
is a true martingale. For It\^o integrals there is the following theorem for a sufficient (but not necessary) condition for true martingales:
The It\^o integral [math] \int_0^t\sigma_udW_u[/math] is a true martingale on [math][0,T][/math] if
For the stochastic integral [math]I_t = \int_0^t\sigma_udW_u[/math] we can define
for which we have a bounded It\^o isometry, and hence Theorem applies to make [math]I_{t\wedge\tau_n}[/math] a martingale on [math][0,T][/math]. An example of a local martingale is the constant elasticity of volatility (CEV) model,
with [math]0\leq\alpha\leq 2[/math]; [math]S_t[/math] is strictly a local martingale for [math]1 \lt \alpha\leq 2[/math]. For [math]\alpha=2[/math] one can check using PDEs that the transition density is
One can check that [math]\mathbb ES_t^4=\infty[/math] for all [math]t \gt 0[/math] so that Theorem does not apply, but to see that it is a strict local martingale one must also check that [math]\mathbb E_tS_T \lt S_t[/math] for all [math]t \lt T[/math].
General references
Papanicolaou, Andrew (2015). "Introduction to Stochastic Differential Equations (SDEs) for Finance". arXiv:1504.05309 [q-fin.MF].