guide:85577edf09: Difference between revisions

From Stochiki
No edit summary
 
No edit summary
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\indicator}[1]{\mathbbm{1}_{\left[ {#1} \right] }}
\newcommand{\Real}{\hbox{Re}}
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}}
\newcommand{\mathds}{\mathbb}</math></div>
\label{app:martingalesStoppingTimes}
Let <math>\mathcal F_t</math> denote a <math>\sigma</math>-algebra. A process <math>X_t</math> is an <math>\mathcal F_t</math>-martingale if and only if


<math display="block">\mathbb E_tX_T = X_t\qquad\forall t\leq T\ ,</math>
where <math>\mathbb E_t=\mathbb E[~\cdot~|\mathcal F_t]</math>. A process <math>X_t</math> is a submartingale if and only if
<math display="block">\mathbb E_tX_T \geq X_t\qquad\forall t\leq T\ ,</math>
and a supermartingale if and only if
<math display="block">\mathbb E_tX_T \leq X_t\qquad\forall t\leq T\ .</math>
Note that true martingale is both a sub and supermartingale.
==Stopping Times==
In probability theory, a stopping time is a a stochastic time that is non-anticipative of the underlying process. For instance, for a stock price <math>S_t</math> a stopping time is the first time the price reaches a level <math>M</math>,
<math display="block">\tau = \inf\{t > 0|S_t\geq M\}\ .</math>
The non-anticipativeness of the stopping is important because there are some events that are seemingly similar but are not stopping times, for instance
<math display="block">\nu=\sup\{t > 0|S_t < M\}</math>
'''is not a stopping time.'''
Stopping times are useful when discussing martingales. For example, so-called stopped-processes inherit the sub or supermartingale property. Namely, <math>X_{t\wedge\tau}</math> is a sub or supermartingale of <math>X_t</math> is a sub or supermartingale, respectively. There is also the optional stopping theorem:
{{proofcard|Theorem (Optional Stopping Theorem)|theorem-1|Let <math>X_t</math> be a submartingale and let <math>\tau</math> be a stopping time. If <math>\tau < \infty </math> a.s. and <math>X_{t\wedge\tau}</math> uniformly integrable, then <math>\mathbb EX_0\leq \mathbb EX_\tau</math> with equality if <math>X_t</math> is a martingale.|}}
An example application of the optional stopping theorem is Gambler's ruin: Let
<math display="block">\tau=\inf\{t > 0|W_t\notin (a,b)\}\ ,</math>
where <math>0 < b < \infty</math> and <math>-\infty < a < 0</math>. Then <math>\mathbb P(\tau < \infty)=1</math> and by optional stopping,
<math display="block">
\begin{align*}
0&=W_0=\mathbb EW_\tau\\
&= a\mathbb P(W_\tau=a)+b(1-\mathbb P(W_\tau=a))\\
&=(a-b)\mathbb P(W_\tau=a)+b\ ,
\end{align*}
</math>
which can be simplified to get
<math display="block">\mathbb P(W_\tau=a) = \frac{b}{b-a}\ .</math>
==Local Martingales==
First define a local martingale:
{{defncard|label=Local Martingale|id=|A process <math>X_t</math> is a local martingale if there exists a sequence of finite and increasing stopping times <math>\tau_n</math> such that <math>\mathbb P(\tau_n\rightarrow\infty\hbox{ as }n\rightarrow\infty)=1</math> and <math>X_{t\wedge\tau_n}</math> is a true martingale for any <math>n</math>. }}
Some remarks are in order:
{{alert-info |
In discrete time there are no local martingales; a martingale is a martingale.
}}
{{alert-info |
A true martingale <math>X_t</math> is a local martingale, and any bounded local martingale is in fact a true martingale.
}}
The It\^o stochastic integral is in general a local martingale, not necessarily a true martingale. That is,
<math display="block">I_t = \int_0^t\sigma_udW_u\ ,</math>
is only a local martingale, but there exists stopping times <math>\tau_n</math> such that
<math display="block">I_{t\wedge\tau_n} =  \int_0^{t\wedge\tau_n}\sigma_udW_u\ ,</math>
is a true martingale. For It\^o integrals there is the following theorem for a sufficient (but not necessary) condition for true martingales:
{{proofcard|Theorem|thm:finiteItoIsometry|The It\^o integral <math> \int_0^t\sigma_udW_u</math> is a true martingale on <math>[0,T]</math> if
<math display="block">\mathbb E\int_0^T\sigma_s^2ds < \infty \ ,</math>
i.e., the It\^o isometry is finite.|}}
For the stochastic integral <math>I_t = \int_0^t\sigma_udW_u</math> we can define
<math display="block">\tau_n = \inf\left\{t > 0\Bigg|\int_0^t\sigma_u^2ds\geq n\right\}\wedge T\ ,</math>
for which we have a bounded It\^o isometry, and hence [[#thm:finiteItoIsometry |Theorem]] applies to make <math>I_{t\wedge\tau_n}</math> a martingale on <math>[0,T]</math>.
An example of a local martingale is the constant elasticity of volatility (CEV) model,
<math display="block">dS_t = \sigma S_t^{\alpha}dW_t\ ,</math>
with <math>0\leq\alpha\leq 2</math>; <math>S_t</math> is strictly a local martingale for <math>1 < \alpha\leq 2</math>. For <math>\alpha=2</math> one can check using PDEs that the transition density is
<math display="block">p_t(z|s) = \frac{s}{z^3\sqrt{2\pi t\sigma^2}}\left(e^{-\frac{\left(\frac1z-\frac1s\right)^2}{2t\sigma^2}}-e^{-\frac{\left(\frac1z+\frac1s\right)^2}{2t\sigma^2}}\right)\ .</math>
One can check that <math>\mathbb ES_t^4=\infty</math> for all <math>t > 0</math> so that [[#thm:finiteItoIsometry |Theorem]] does not apply, but to see that it is a strict local martingale one must also check that <math>\mathbb E_tS_T < S_t</math> for all <math>t < T</math>.
==General references==
{{cite arXiv|last1=Papanicolaou|first1=Andrew|year=2015|title=Introduction to Stochastic Differential Equations (SDEs) for Finance|eprint=1504.05309|class=q-fin.MF}}

Revision as of 00:30, 4 June 2024

[math] \newcommand{\indicator}[1]{\mathbbm{1}_{\left[ {#1} \right] }} \newcommand{\Real}{\hbox{Re}} \newcommand{\HRule}{\rule{\linewidth}{0.5mm}} \newcommand{\mathds}{\mathbb}[/math]

\label{app:martingalesStoppingTimes} Let [math]\mathcal F_t[/math] denote a [math]\sigma[/math]-algebra. A process [math]X_t[/math] is an [math]\mathcal F_t[/math]-martingale if and only if

[[math]]\mathbb E_tX_T = X_t\qquad\forall t\leq T\ ,[[/math]]

where [math]\mathbb E_t=\mathbb E[~\cdot~|\mathcal F_t][/math]. A process [math]X_t[/math] is a submartingale if and only if

[[math]]\mathbb E_tX_T \geq X_t\qquad\forall t\leq T\ ,[[/math]]

and a supermartingale if and only if

[[math]]\mathbb E_tX_T \leq X_t\qquad\forall t\leq T\ .[[/math]]

Note that true martingale is both a sub and supermartingale.

Stopping Times

In probability theory, a stopping time is a a stochastic time that is non-anticipative of the underlying process. For instance, for a stock price [math]S_t[/math] a stopping time is the first time the price reaches a level [math]M[/math],

[[math]]\tau = \inf\{t \gt 0|S_t\geq M\}\ .[[/math]]

The non-anticipativeness of the stopping is important because there are some events that are seemingly similar but are not stopping times, for instance

[[math]]\nu=\sup\{t \gt 0|S_t \lt M\}[[/math]]

is not a stopping time. Stopping times are useful when discussing martingales. For example, so-called stopped-processes inherit the sub or supermartingale property. Namely, [math]X_{t\wedge\tau}[/math] is a sub or supermartingale of [math]X_t[/math] is a sub or supermartingale, respectively. There is also the optional stopping theorem:

Theorem (Optional Stopping Theorem)

Let [math]X_t[/math] be a submartingale and let [math]\tau[/math] be a stopping time. If [math]\tau \lt \infty [/math] a.s. and [math]X_{t\wedge\tau}[/math] uniformly integrable, then [math]\mathbb EX_0\leq \mathbb EX_\tau[/math] with equality if [math]X_t[/math] is a martingale.

An example application of the optional stopping theorem is Gambler's ruin: Let

[[math]]\tau=\inf\{t \gt 0|W_t\notin (a,b)\}\ ,[[/math]]

where [math]0 \lt b \lt \infty[/math] and [math]-\infty \lt a \lt 0[/math]. Then [math]\mathbb P(\tau \lt \infty)=1[/math] and by optional stopping,

[[math]] \begin{align*} 0&=W_0=\mathbb EW_\tau\\ &= a\mathbb P(W_\tau=a)+b(1-\mathbb P(W_\tau=a))\\ &=(a-b)\mathbb P(W_\tau=a)+b\ , \end{align*} [[/math]]

which can be simplified to get

[[math]]\mathbb P(W_\tau=a) = \frac{b}{b-a}\ .[[/math]]

Local Martingales

First define a local martingale:

Definition (Local Martingale)

A process [math]X_t[/math] is a local martingale if there exists a sequence of finite and increasing stopping times [math]\tau_n[/math] such that [math]\mathbb P(\tau_n\rightarrow\infty\hbox{ as }n\rightarrow\infty)=1[/math] and [math]X_{t\wedge\tau_n}[/math] is a true martingale for any [math]n[/math].

Some remarks are in order:

In discrete time there are no local martingales; a martingale is a martingale.

A true martingale [math]X_t[/math] is a local martingale, and any bounded local martingale is in fact a true martingale.

The It\^o stochastic integral is in general a local martingale, not necessarily a true martingale. That is,

[[math]]I_t = \int_0^t\sigma_udW_u\ ,[[/math]]

is only a local martingale, but there exists stopping times [math]\tau_n[/math] such that

[[math]]I_{t\wedge\tau_n} = \int_0^{t\wedge\tau_n}\sigma_udW_u\ ,[[/math]]

is a true martingale. For It\^o integrals there is the following theorem for a sufficient (but not necessary) condition for true martingales:

Theorem

The It\^o integral [math] \int_0^t\sigma_udW_u[/math] is a true martingale on [math][0,T][/math] if

[[math]]\mathbb E\int_0^T\sigma_s^2ds \lt \infty \ ,[[/math]]
i.e., the It\^o isometry is finite.

For the stochastic integral [math]I_t = \int_0^t\sigma_udW_u[/math] we can define

[[math]]\tau_n = \inf\left\{t \gt 0\Bigg|\int_0^t\sigma_u^2ds\geq n\right\}\wedge T\ ,[[/math]]

for which we have a bounded It\^o isometry, and hence Theorem applies to make [math]I_{t\wedge\tau_n}[/math] a martingale on [math][0,T][/math]. An example of a local martingale is the constant elasticity of volatility (CEV) model,

[[math]]dS_t = \sigma S_t^{\alpha}dW_t\ ,[[/math]]

with [math]0\leq\alpha\leq 2[/math]; [math]S_t[/math] is strictly a local martingale for [math]1 \lt \alpha\leq 2[/math]. For [math]\alpha=2[/math] one can check using PDEs that the transition density is

[[math]]p_t(z|s) = \frac{s}{z^3\sqrt{2\pi t\sigma^2}}\left(e^{-\frac{\left(\frac1z-\frac1s\right)^2}{2t\sigma^2}}-e^{-\frac{\left(\frac1z+\frac1s\right)^2}{2t\sigma^2}}\right)\ .[[/math]]

One can check that [math]\mathbb ES_t^4=\infty[/math] for all [math]t \gt 0[/math] so that Theorem does not apply, but to see that it is a strict local martingale one must also check that [math]\mathbb E_tS_T \lt S_t[/math] for all [math]t \lt T[/math].

General references

Papanicolaou, Andrew (2015). "Introduction to Stochastic Differential Equations (SDEs) for Finance". arXiv:1504.05309 [q-fin.MF].